5 resultados para Two-wavelength HPLC fingerprinting, Cassia seeds, Chemometrics, Authentication
em Brock University, Canada
Resumo:
Botrytis cinerea isolates collected from Niagara region were treated with different concentrations of the fiingicide, iprodione to test their sensitivity to this fungicide. These Botrytis cinerea isolates were divided into two groups according to their sensitivity to iprodione. Those isolates whose growth was inhibited by iprodione at concentrations < 2|i,g/nil were classified as sensitive isolates. Isolates that were able to show considerable growth at 2|j,g/ml iprodione were classified as resistant isolates. Resistant and sensitive isolates were compared for their morphological and growth characteristics, conidial germination, virulence on grape berries and protein banding profiles. The fungicide iprodione at a concentration of 2|xg/nil inhibited mycelial growth, sporulation and conidial germination of sensitive isolates but not those of resistant isolates. The inhibitory effect of the fungicide was greater on mycelial growth than on conidia germination of the sensitive isolates. Sensitive isolates produced no sclerotia whereas resistant isolates produced large number of sclerotia. The fungicide iprodione affected sclerotial production in the resistant isolates. The number of sclerotia was decreased by the increase of iprodione in the medium. Sporulation of resistant isolates was improved significantly in the presence of iprodione. The resistant isolates were as virulent as the sensitive isolates on grape berries. The sensitive and resistant isolates showed similar protein banding profiles in the absence of iprodione in polyacrylamide gel electrophoresis studies. Similar protein profiles were also observed when these isolates were grown in the presence of low iprodione concentration (0.5|ig/nil). However, in the presence of concentration (0.5|ig/nil). However, in the presence of iprodione at concentration of 5|Xg/nil, one protein band with approximate molecular weight of 83 KDa was present in the growing resistant isolates (and the controls) but was missing in the inhibited sensitive isolates.
Resumo:
Confocal and two-photon microcopy have become essential tools in biological research and today many investigations are not possible without their help. The valuable advantage that these two techniques offer is the ability of optical sectioning. Optical sectioning makes it possible to obtain 3D visuahzation of the structiu-es, and hence, valuable information of the structural relationships, the geometrical, and the morphological aspects of the specimen. The achievable lateral and axial resolutions by confocal and two-photon microscopy, similar to other optical imaging systems, are both defined by the diffraction theorem. Any aberration and imperfection present during the imaging results in broadening of the calculated theoretical resolution, blurring, geometrical distortions in the acquired images that interfere with the analysis of the structures, and lower the collected fluorescence from the specimen. The aberrations may have different causes and they can be classified by their sources such as specimen-induced aberrations, optics-induced aberrations, illumination aberrations, and misalignment aberrations. This thesis presents an investigation and study of image enhancement. The goal of this thesis was approached in two different directions. Initially, we investigated the sources of the imperfections. We propose methods to eliminate or minimize aberrations introduced during the image acquisition by optimizing the acquisition conditions. The impact on the resolution as a result of using a coverslip the thickness of which is mismatched with the one that the objective lens is designed for was shown and a novel technique was introduced in order to define the proper value on the correction collar of the lens. The amoimt of spherical aberration with regard to t he numerical aperture of the objective lens was investigated and it was shown that, based on the purpose of our imaging tasks, different numerical apertures must be used. The deformed beam cross section of the single-photon excitation source was corrected and the enhancement of the resolution and image quaUty was shown. Furthermore, the dependency of the scattered light on the excitation wavelength was shown empirically. In the second part, we continued the study of the image enhancement process by deconvolution techniques. Although deconvolution algorithms are used widely to improve the quality of the images, how well a deconvolution algorithm responds highly depends on the point spread function (PSF) of the imaging system applied to the algorithm and the level of its accuracy. We investigated approaches that can be done in order to obtain more precise PSF. Novel methods to improve the pattern of the PSF and reduce the noise are proposed. Furthermore, multiple soiu'ces to extract the PSFs of the imaging system are introduced and the empirical deconvolution results by using each of these PSFs are compared together. The results confirm that a greater improvement attained by applying the in situ PSF during the deconvolution process.
Resumo:
The effects of sample solvent composition and the injection volume, on the chromatographic peak profiles of two carbamate derivatives, methyl 2-benzimidazolecarbamate (MBC) and 3-butyl-2,4-dioxo[1,2-a]-s-triazinobenzimidazole (STB), were studied using reverse phase high performance liquid chromatograph. The study examined the effects of acetonitrile percentage in the sample solvent from 5 to 50%, effects of methanol percentage from 5 to 50%, effects of pH increase from 4.42 to 9.10, and effect of increasing buffer concentration from ° to 0.12M. The effects were studied at constant and increasing injection mass and at four injection volumes of 10, 50, 100 and 200 uL. The study demonstrated that the amount and the type of the organic solvents, the pH, and the buffer strength of the sample solution can have a pronounced effect on the peak heights, peak widths, and retention times of compounds analysed. MBC, which is capable of intramolecular hydrogen bonding and has no tendency to ionize, showed a predictable increase .in band broadening and a decrease in retention times at higher eluting strengths of the sample solvent. STB, which has a tendency to ionize or to strongly interact with the sample solvent, was influenced in various ways by the changes in ths sample solvent composition. The sample solvent effects became more pronounced as the injection volume increased and as the percentage of organic solvent in the sample solution became greater. The peak height increases for STB at increasing buffer concentrations became much more pronounced at higher analyte concentrations. It was shown that the widely accepted procedure of dissolving samples in the mobile phase does not yield the most efficient chromatograms. For that reason samples should be dissolved in the solutions with higher aqueous content than that of the mobile phase whenever possible. The results strongly recommend that all the samples and standards, regardless whether the standards are external or internal, be analysed at a constant sample composition and a constant injection volume.
Resumo:
A high performance liquid chromatographic method employing two columns connected in series and separated~y·a.switching valve has been developed for the analysis of the insecticide/ nematicide oxamyl (methyl-N' ,N'-dimethyl-N-[(methylcarbamoyl) oxy]-l-thiooxarnimidate) and two of its metabolites. A variation of this method involving two reverse phase columns was employed to monitor the persistence and translocation of oxamyl in treated peach seedlings. It was possible to simultaneously analyse for oxamyl and its corresponding oxime (methyl-N',N'-dimethyl-N-hydroxy-l-thiooxamimidate}, a major metabolite of oxamyl in plants, without prior cleanup of the samples. The method allowed detection of 0.058 pg oxamyl and 0.035 p.g oxime. On treated peach leaves oxamyl was found to dissipate rapidly during the first two-week period, followed by a period of slow decomposition. Movement of oxamyl or its oxime did not occur in detectable quantities to untreated leaves or to the root or soil. A second variation of the method which employed a size exclusion column as·the first column and a reverse phase column as the second was used to monitor the degradation of oxamyl in treated, planted corn seeds and was suitable for simultaneous analysis of oxamyl, its oxime and dimethylcyanoformamide (DMCF), a metabolite of oxamyl. The method allowed detection of 0.02 pg oxamyl, 0.02 p.g oxime and 0.005 pg DMCF. Oxamyl was found to persist for a period of 5 - 6 weeks, which is long enough to permit oxamyl seedtreatment to be considered as a potential means of protecting young corn plants from nematode attack. Decomposition was found to be more rapid in unsterilized soil than in sterililized soil. DMCF was found to have a nematostatic effect at high concentrations ( 2,OOOpprn), but at lower concentrations no effect on nematode mobility was observed. Oxamyl, on the other hand, was found to reduce the mobility of nematodes at concentrations down to 4 ppm.
Resumo:
A simple method was developed for treating corn seeds with oxamyl. It involved soaking the seeds to ensure oxamyl uptake, centrifugation to draw off excess solution, and drying under a stream of air to prevent the formation of fungus. The seeds were found to have an even distribution of oxamyl. Seeds remained fungus-free even 12 months after treatment. The highest nonphytotoxic treatment level was obtained by using a 4.00 mg/mL oxamyl solution. Extraction methods for the determination of oxamyl (methyl-N'N'-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate), its oxime (methyl-N',N'-dimethyl-N-hydroxy-1-thiooxamimidate), and DMCF (N,N-dimethyl-1-cyanoformanade) in seed" root, and soil were developed. Seeds were processed by homogenizing, then shaking in methanol. Significantly more oxamyl was extracted from hydrated seeds as opposed to dry seeds. Soils were extracted by tumbling in methanol; recoveries range~ from 86 - 87% for oxamyl. Root was extracted to 93% efficiency for oxamyl by homogenizing the tissue in methanol. NucharAttaclay column cleanup afforded suitable extracts for analysis by RP-HPLC on a C18 column and UV detection at 254 nm. In the degradation study, oxamyl was found to dissipate from the seed down into the soil. It was also detected in the root. Oxime was detected in both the seed and soil, but not in the root. DMCF was detected in small amounts only in the seed.