3 resultados para Triphenylmethyl Ethers
em Brock University, Canada
Resumo:
This work contains the results of a series of reduction studies on polyhalogenated aromatic compounds and related ethers using alkali metals in liquid ammonia. In general, polychlorobenzenes were reduced to t he parent aromatic hydrocarbon or to 1 ,4-cyc1ohexadiene, and dipheny1ethers were cleaved to the aroma tic hydrocarbon and a phenol. Chlorinated dipheny1ethers were r eductive1y dechlorinated in the process. For example, 4-chlorodipheny1- ether gave benzene and phenol. Pentach1orobenzene and certain tetrachlorobenzenes disproportionated to a fair degree during the reduction process if no added proton source was present. The disproportionation was attributed to a build-up of amide ion. Addition of ethanol completely suppressed the formation of any disproportionation products. In the reductions of certain dipheny1ethers , the reduction of one or both of the dipheny1ether rings occurred, along with the normal cleavage. This was more prevalent when lithium was the metal used . As a Sidelight, certain chloropheno1s were readily dechlorinated. In light of these results, the reductive detoxification of the chlorinated dibenzo-1,4-dioxins seems possible with alkali metals in l iquid ammonia.
Resumo:
This research was carried out to obtain a convenient route for the synthesis of [7_ 14C]-p-hydroxy benzaldehyde. Section 1 of the thesis includes a route involving intermediates with protecting groups like benzyl and methyl ethers of the phenols. The benzyl ethers afforded the product in relatively better yield. The overall synthesis involves four steps. Section 2 describes the reactions carried out directly on phenols, and a three step pathway is obtained for the synthesis of p-hydroxy benzaldehyde, which was repeated on labelled compounds to obtain [7_14C]p- hydroxy benzaldehyde. The synthesis involves the reaction of p-bromophenol with Cu14CN to yield [7_ 14C]-p-cyano phenol, which is then reduced to the aldehyde by means of a simple and clean photolysis method. The same route was tried out to get 3,4-dihydroxybenzaldehyde and was found to work equally well for the synthesis of this compound. Section 3 deals with the isolation of labelled alkaloids, corydaline, protopine and reticu1ine from [2-3H,1-14C]-dopamine (3H/ 14C ratio = 4) fed Corydalis solida. 3H/14C ratios in the labelled alkaloids were determined. The uncorrected values showed almost 50% loss of 3H relative to 14C in reticuline, and roughly 75% loss of the 3H relative to 14C in corydaline and protopine.
Resumo:
Exchange reactions between molecular complexes and excess acid
or base are well known and have been extensively surveyed in the
literature(l). Since the exchange mechanism will, in some way
involve the breaking of the labile donor-acceptor bond, it follows
that a discussion of the factors relating to bonding in molecular complexes
will be relevant.
In general, a strong Lewis base and a strong Lewis acid form a
stable adduct provided that certain stereochemical requirements are
met.
A strong Lewis base has the following characteristics (1),(2)
(i) high electron density at the donor site.
(ii) a non-bonded electron pair which has a low ionization potential
(iii) electron donating substituents at the donor atom site.
(iv) facile approach of the site of the Lewis base to the
acceptor site as dictated by the steric hindrance of the
substituents.
Examples of typical Lewis bases are ethers, nitriles, ketones,
alcohols, amines and phosphines.
For a strong Lewis acid, the following properties are important:(
i) low electron density at the acceptor site.
(ii) electron withdrawing substituents. (iii) substituents which do not interfere with the close
approach of the Lewis base.
(iv) availability of a vacant orbital capable of accepting
the lone electron pair of the donor atom.
Examples of Lewis acids are the group III and IV halides such
(M=B, AI, Ga, In) and MX4 - (M=Si, Ge, Sn, Pb).
The relative bond strengths of molecular complexes have been
investigated by:-
(i)
(ii)
(iii)
(iv)
(v]
(vi)
dipole moment measurements (3).
shifts of the carbonyl peaks in the IIIR. (4) ,(5), (6) ..
NMR chemical shift data (4),(7),(8),(9).
D.V. and visible spectrophotometric shifts (10),(11).
equilibrium constant data (12), (13).
heats of dissociation and heats of reactions (l~),
(16), (17), (18), (19).
Many experiments have bben carried out on boron trihalides in
order to determine their relative acid strengths. Using pyridine,
nitrobenzene, acetonitrile and trimethylamine as reference Lewis
bases, it was found that the acid strength varied in order:RBx3 >
BC1
3 >BF 3
• For the acetonitrile-boron trihalide and trimethylamine
boron trihalide complexes in nitrobenzene, an-NMR study (7) showed
that the shift to lower field was. greatest for the BB~3 adduct ~n~
smallest for the BF 3 which is in agreement with the acid strengths. If electronegativities of the substituents were the only
important effect, and since c~ Br ,one would expect
the electron density at the boron nucleus to vary as BF3