2 resultados para Total Economic Value
em Brock University, Canada
Resumo:
Agaricus bisporus is the most commonly cultivated mushroom in North America and has a great economic value. Green mould is a serious disease of A. bisporus and causes major reductions in mushroom crop production. The causative agent of green mould disease in North America was identified as Trichoderma aggressivum f. aggressivum. Variations in the disease resistance have been shown in the different commercial mushroom strains. The purpose of this study is to continue investigations of the interactions between T. aggressivum and A. bisporus during the development of green mould disease. The main focus of the research was to study the roles of cell wall degrading enzymes in green mould disease resistance and pathogenesis. First, we tried to isolate and sequence the N-acetylglucosaminidase from A. bisporus to understand the defensive mechanism of mushroom against the disease. However, the lack of genomic and proteomic information of A. bisporus limited our efforts. Next, T. aggressivum cell wall degrading enzymes that are thought to attack Agaricus and mediate the disease development were examined. The three cell wall degrading enzymes genes, encoding endochitinase (ech42), glucanase (fJ-1,3 glucanase) and protease (prb 1), were isolated and sequenced from T. aggressivum f. aggressivum. The sequence data showed significant homology with the corresponding genes from other fungi including Trichoderma species. The transcription levels of the three T. aggressivum cell wall degrading enzymes were studied during the in vitro co-cultivation with A. bisporus using R T -qPCR. The transcription levels of the three genes were significantly upregulated compared to the solitary culture levels but were upregulated to a lesser extent in co-cultivation with a resistant strain of A. bisporus than with a sensitive strain. An Agrobacterium tumefaciens transformation system was developed for T. aggressivum and was used to transform three silencing plasmids to construct three new T. aggressivum phenotypes, each with a silenced cell wall degrading enzyme. The silencing efficiency was determined by RT-qPCR during the individual in vitro cocultivation of each of the new phenotypes with A. bisporus. The results showed that the expression of the three enzymes was significantly decreased during the in vitro cocultivation when compared with the wild type. The phenotypes were co-cultivated with A. bisporus on compost with monitoring the green mould disease progression. The data indicated that prbi and ech42 genes is more important in disease progression than the p- 1,3 glucanase gene. Finally, the present study emphasises the role of the three cell wall degrading enzymes in green mould disease infection and may provide a promising tool for disease management.
Resumo:
Intercropping systems are seen as advantageous as they can provide higher crop yield and diversity along with fewer issues related to pests and weeds than monocultures. However, plant interactions in intercropped crop species and between crops and weeds in these systems are still not well understood. The main objective of this study was to investigate interactions between onion (Allium cepa) and yellow wax bean (Phaseolus vulgaris) in monocultures and intercropping with and without the presence of a weed species, either Chenopodium album or Amaranthus hybridus. Another objective of this study was to compare morphological traits of C. album from two different populations (conventional vs. organic farms). Using a factorial randomized block design, both crop species were planted either in monoculture or intercropped with or without the presence of one of the two weeds. The results showed that intercropping onion with yellow wax bean increased the growth of onion but decreased the growth of yellow wax bean when compared to monocultures. The relative yield total (RYT) value was 1.3. Individual aboveground dry weight of both weed species under intercropping was reduced about 5 times when compared to the control. The poor growth of weeds in intercropping might suggest that crop diversification can help resist weed infestations. A common garden experiment indicated that C. album plants from the conventional farm had larger leaf area and were taller than those from the organic farm. This might be associated with specific evolutionary adaptation of weeds to different farming practices. These findings contribute to the fundamental knowledge of crop-crop interactions, crop-weed competition and adaptation of weeds to various conditions. They provide insights for the management of diversified cropping systems and integrated weed management as practices in sustainable agriculture.