18 resultados para The Lattice Solid Model
em Brock University, Canada
Resumo:
The optical conductivity of the Anderson impurity mode l has been calculated by emp l oying the slave boson technique and an expansion in powers of l i N, where N is the d egeneracy o f the f electron level . This method has been used to find the effective mass of the conduction electrons for temperatures above and below the Kondo tempera ture. For low temperatures, the mass enhancement is f ound to be large while a t high t emperatures, the mass enhancement is sma ll. The conductivity i s f ound to be Drude like with frequency dependent effective mass and scattering time for low independent effective mass and temperatures and scattering time f requency for high t emperatures. The behavior of both the effective mass and the conductivity is in qualitative agreement with experimental r esul t s .
Resumo:
Therllloelynalllics of lllodel 11lel1ll)rane systeills containing 1110nollnsaturatecl I)lloSI)holil) ids is strongly infllienced l)y the I)osition of the C==C dOlll)le })ond in tIle acyl chain. The telllI)eratllres of both chain-nlelting (TM) and La -+ HI! (TH) I)hase traIlsitions are lowered by IIp to 20°C when C==C is Inoved froln positions 6 or 11 to I)osition 9 in an 18-carl)on chain. This work is an attellll)t to ellicidate the uIlderlying Illoleclilar Illechanisllls reSI)Onsi])le for tllese draillatic tllerillodynaillic changes. Mixtllres of di-18: 1 l)hoSI)hatidylethanolanline with C==C at l)ositioIlS 6, 9, 11 were llsed, witll a sI1lall aI1lOlint of I)erdellterated tetradecanol, known to })e a gooel rel)Orter of the cllain Illoleclilar order. SI)ectral second 11I0I1lents were llsed to Illonitor tIle La -+ HII I)hase transition, which was fOllnd to ])e ])road (2-6°C), with a slight llysteresis on heatiIlg/cooling. The orientational order I)rofiles were nleasllred 1lSiIlg 2H Illiclear Illagnetic resonance and changes in these order I)rofiles between La aIld HII I)hases silow l)oth a local increase in order in the vicinity of the C==C bonds and an o\Terall decrease ill the average orientational order of the chain as a whole. These Sll])tle changes recluire })oth high-fidelity SI)ectrosCol)y and a careflll data analysis that takes into aCCOllnt the effects due to l)artiall1lagnetically-indllced orientational ordering of the l)ilayers. In tIle COIltext of SOllle recently rel)Orted cross-relaxation 11leaSlirenlents in Silllilar l)llOSI)llolil)iels, 0111' reslilts sllggest that large-anll)litllde conforlllational changes in the interior of tIle I110del 111eI11])ranes I)lay a 1110re significant role than I)reviollsly thOllght.
Resumo:
The frequency dependence of the electron-spin fluctuation spectrum, P(Q), is calculated in the finite bandwidth model. We find that for Pd, which has a nearly full d-band, the magnitude, the range, and the peak frequency of P(Q) are greatly reduced from those in the standard spin fluctuation theory. The electron self-energy due to spin fluctuations is calculated within the finite bandwidth model. Vertex corrections are examined, and we find that Migdal's theorem is valid for spin fluctuations in the nearly full band. The conductance of a normal metal-insulator-normal metal tunnel junction is examined when spin fluctuations are present in one electrode. We find that for the nearly full band, the momentum independent self-energy due to spin fluctuations enters the expression for the tunneling conductance with approximately the same weight as the self-energy due to phonons. The effect of spin fluctuations on the tunneling conductance is slight within the finite bandwidth model for Pd. The effect of spin fluctuations on the tunneling conductance of a metal with a less full d-band than Pd may be more pronounced. However, in this case the tunneling conductance is not simply proportional to the self-energy.
Resumo:
The effects of a complexly worded counterattitudinal appeal on laypeople's attitudes toward a legal issue were examined, using the Elaboration Likelihood Model (ELM) of persuasion as a theoretical framework. This model states that persuasion can result from the elaboration and scrutiny of the message arguments (i.e., central route processing), or can result from less cognitively effortful strategies, such as relying on source characteristics as a cue to message validity (i.e., peripheral route processing). One hundred and sixty-seven undergraduates (85 men and 81 women) listened to eitller a low status or high status source deliver a counterattitudinal speech on a legal issue. The speech was designed to contain strong or weak arguments. These arguments were 'worded in a simple and, therefore, easy to comprehend manner, or in a complex and, therefore, difficult to comprehend manner. Thus, there were three experimental manipulations: argument comprehensibility (easy to comprehend vs. difficult to comprehend), argumel11 strength (weak vs. strong), and source status (low vs. high). After listening to tIle speec.J] participants completed a measure 'of their attitude toward the legal issue, a thought listil1g task, an argument recall task,manipulation checks, measures of motivation to process the message, and measures of mood. As a result of the failure of the argument strength manipulation, only the effects of the comprehel1sibility and source status manipulations were tested. There was, however, some evidence of more central route processing in the easy comprehension condition than in the difficult comprehension condition, as predicted. Significant correlations were found between attitude and favourable and unfavourable thoughts about the legal issue with easy to comprehend arguments; whereas, there was a correlation only between attitude and favourable thoughts 11 toward the issue with difficult to comprehend arguments, suggesting, perhaps, that central route processing, \vhich involves argument scrutiny and elaboration, occurred under conditions of easy comprehension to a greater extent than under conditions of difficult comprehension. The results also revealed, among other findings, several significant effects of gender. Men had more favourable attitudes toward the legal issue than did women, men recalled more arguments from the speech than did women, men were less frustrated while listening to the speech than were ,vomen, and men put more effort into thinking about the message arguments than did women. When the arguments were difficult to comprehend, men had more favourable thoughts and fewer unfavourable thoughts about the legal issue than did women. Men and women may have had different affective responses to the issue of plea bargaining (with women responding more negatively than men), especially in light of a local and controversial plea bargain that occurred around the time of this study. Such pre-existing gender differences may have led to tIle lower frustration, the greater effort, the greater recall, and more positive attitudes for men than for WOlnen. Results· from this study suggest that current cognitive models of persuasion may not be very applicable to controversial issues which elicit strong emotional responses. Finally, these data indicate that affective responses, the controversial and emotional nature ofthe issue, gender and other individual differences are important considerations when experts are attempting to persuade laypeople toward a counterattitudinal position.
Resumo:
Fifty-six percent of Canadians, 20 years of age and older, are inactive (Canadian Community Health Survey, 200012001). Research has indicated that one of the most dramatic declines in population physical activity occurs between adolescence and young adulthood (Melina, 2001; Stephens, Jacobs, & White, 1985), a time when individuals this age are entering or attending college or university. Colleges and universities have generally been seen as environments where physical activity and sport can be promoted and accommodated as a result of the available resources and facilities (Archer, Probert, & Gagne, 1987; Suminski, Petosa, Utter, & Zhang, 2002). Intramural sports, one of the most common campus recreational sports options available for post-secondary students, enable students to participate in activities that are suited for different levels of ability and interest (Lewis, Jones, Lamke, & Dunn, 1998). While intramural sports can positively affect the physical activity levels and sport participation rates of post-secondary students, their true value lies in their ability to encourage sport participation after school ends and during the post-school lives of graduates (Forrester, Ross, Geary, & Hall, 2007). This study used the Sport Commitment Model (Scanlan et aI., 1993a) and the Theory of Planned Behaviour (Ajzen, 1991) with post secondary intramural volleyball participants in an effort to examine students' commitment to intramural sport and 1 intentions to participate in intramural sports. More specifically, the research objectives of this study were to: (1.) test the Sport Commitment Model with a sample of postsecondary intramural sport participants(2.) determine the utility of the sixth construct, social support, in explaining the sport commitment of post-secondary intramural sport participants; (3.) determine if there are any significant differences in the six constructs of IV the SCM and sport commitment between: gender, level of competition (competitive A vs. B), and number of different intramural sports played; (4.) determine if there are any significant differences between sport commitment levels and constructs from the Theory of Planned Behaviour (attitudes, subjective norms, perceived behavioural control, and intentions); (5.) determine the relationship between sport commitment and intention to continue participation in intramural volleyball, continue participating in intramurals and continuing participating in sport and physical activity after graduation; and (6.) determine if the level of sport commitment changes the relationship between the constructs from the Theory of Planned Behaviour. Of the 318 surveys distributed, there were 302 partiCipants who completed a usable survey from the sample of post-secondary intramural sport participants. There was a fairly even split of males and females; the average age of the students was twenty-one; 90% were undergraduate students; for approximately 25% of the students, volleyball was the only intramural sport they participated in at Brock and most were part of the volleyball competitive B division. Based on the post-secondary students responses, there are indications of intent to continue participation in sport and physical activity. The participation of the students is predominantly influenced by subjective norms, high sport commitment, and high sport enjoyment. This implies students expect, intend and want to 1 participate in intramurals in the future, they are very dedicated to playing on an intramural team and would be willing to do a lot to keep playing and students want to participate when they perceive their pursuits as enjoyable and fun, and it makes them happy. These are key areas that should be targeted and pursued by sport practitioners.
Resumo:
The Easy-Play Model is a useful framework for facilitating sport among a diverse group of participants of different ages and ability levels. The model’s focus on de-emphasizing competitiveness in an effort to establish an optimally competitive environment has facilitated positive play experiences. This study investigated the experiences of players who have been a part of a weekly soccer program implementing the Easy-Play Model. In-depth interviews of 8 participants provided insight concerning the benefits and weaknesses of the approach and the notable experiences of the players. Results provided data confirming the model’s effectiveness in facilitating positive social interactions, safe play experiences where injury is generally a negligible concern, and productive opportunities to be physically active through sport. This study of the Easy-Play Model sets the foundation for future research which should further add to our understanding of productive ways to engage people in physical activity through sport.
Resumo:
The ovariectomized (OVX) rat, a preclinical model for studying postmenopausal bone loss, may also be used to study differences in alveolar bone (AB). The objectives of this study were to quantify the differences in AB following estrogen replacement therapy (ERT), and to investigate the relationship between AB structure and density, and trabecular bone at the femoral neck (FN) and third lumbar vertebral body (LB3). Estrogen treated rats had a higher bone volume fraction (BV/TV) at the AB region (9.8% P < 0.0001), FN (12% P < 0.0001), and LB3 (11.5% P < 0.0001) compared to the OVX group. BV/TV of the AB was positively correlated with the BV/TV at the FN (r = 0.69 P < 0.0001) and the LB3 (r = 0.75 P < 0.0001). The trabecular number (Tb.N), trabecular separation (Tb.Sp), and structure model index (SMI) were also positively correlated (P < 0.05) between the AB and FN (r = 0.42, 0.49, and 0.73, respectfully) and between the AB and LB3 (r = 0.44, 0.63, and 0.69, respectfully). Given the capacity of AB to respond to ERT, future preclinical drug/nutritional intervention studies aimed at improving skeletal health should include the AB as a region of interest (ROI).
Resumo:
This paper analyzes versions of the salvo model of missile combat where area fire is used by one or both sides in a battle. While these models share some properties with the area fire Lanchester model and the aimed fire salvo model, they also display some interesting differences, especially over the course of several salvos. Whereas the relative size of each force is important with aimed fire, with area fire it is the absolute size that matters. Similarly, while aimed fire exhibits square law behavior, area fire shows approximately linear behavior. When one side uses area and the other uses aimed fire, the model displays a mix of square and linear law behavior.
Resumo:
The Lennard-Jones Devonshire 1 (LJD) single particle theory for liquids is extended and applied to the anharmonic solid in a high temperature limit. The exact free energy for the crystal is expressed as a convergent series of terms involving larger and larger sets of contiguous particles called cell-clusters. The motions of all the particles within cell-clusters are correlated to each other and lead to non-trivial integrals of orders 3, 6, 9, ... 3N. For the first time the six dimensional integral has been calculated to high accuracy using a Lennard-Jones (6-12) pair interaction between nearest neighbours only for the f.c.c. lattice. The thermodynamic properties predicted by this model agree well with experimental results for solid Xenon.
Resumo:
We have calculated the thermodynamic properties of monatomic fcc crystals from the high temperature limit of the Helmholtz free energy. This equation of state included the static and vibrational energy components. The latter contribution was calculated to order A4 of perturbation theory, for a range of crystal volumes, in which a nearest neighbour central force model was used. We have calculated the lattice constant, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the adiabatic and the isothermal bulk modulus, and the Gruneisen parameter, for two of the rare gas solids, Xe and Kr, and for the fcc metals Cu, Ag, Au, Al, and Pb. The LennardJones and the Morse potential were each used to represent the atomic interactions for the rare gas solids, and only the Morse potential was used for the fcc metals. The thermodynamic properties obtained from the A4 equation of state with the Lennard-Jones potential, seem to be in reasonable agreement with experiment for temperatures up to about threequarters of the melting temperature. However, for the higher temperatures, the results are less than satisfactory. For Xe and Kr, the thermodynamic properties calculated from the A2 equation of state with the Morse potential, are qualitatively similar to the A 2 results obtained with the Lennard-Jones potential, however, the properties obtained from the A4 equation of state are in good agreement with experiment, since the contribution from the A4 terms seem to be small. The lattice contribution to the thermal properties of the fcc metals was calculated from the A4 equation of state, and these results produced a slight improvement over the properties calculated from the A2 equation of state. In order to compare the calculated specific heats and bulk moduli results with experiment~ the electronic contribution to thermal properties was taken into account~ by using the free electron model. We found that the results varied significantly with the value chosen for the number of free electrons per atom.
Resumo:
Molec ul ar dynamics calculations of the mean sq ua re displacement have been carried out for the alkali metals Na, K and Cs and for an fcc nearest neighbour Lennard-Jones model applicable to rare gas solids. The computations for the alkalis were done for several temperatures for temperature vol ume a swell as for the the ze r 0 pressure ze ro zero pressure volume corresponding to each temperature. In the fcc case, results were obtained for a wide range of both the temperature and density. Lattice dynamics calculations of the harmonic and the lowe s t order anharmonic (cubic and quartic) contributions to the mean square displacement were performed for the same potential models as in the molecular dynamics calculations. The Brillouin zone sums arising in the harmonic and the quartic terms were computed for very large numbers of points in q-space, and were extrapolated to obtain results ful converged with respect to the number of points in the Brillouin zone.An excellent agreement between the lattice dynamics results was observed molecular dynamics and in the case of all the alkali metals, e~ept for the zero pressure case of CSt where the difference is about 15 % near the melting temperature. It was concluded that for the alkalis, the lowest order perturbation theory works well even at temperat ures close to the melting temperat ure. For the fcc nearest neighbour model it was found that the number of particles (256) used for the molecular dynamics calculations, produces a result which is somewhere between 10 and 20 % smaller than the value converged with respect to the number of particles. However, the general temperature dependence of the mean square displacement is the same in molecular dynamics and lattice dynamics for all temperatures at the highest densities examined, while at higher volumes and high temperatures the results diverge. This indicates the importance of the higher order (eg. ~* ) perturbation theory contributions in these cases.
Resumo:
We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.
Resumo:
A survey of predominantly industrial silicon carbide has been carried out using Magic Angle Spinning nuclear magnetic resonance (MAS nmr); a solid state technique. Three silicon carbide polytypes were studied; 3C, 6H, and 15R. The 13C and 29 Si MAS nmr spectra of the bulk SiC sample was identified on the basis of silicon (carbon) site type in the d iff ere n t pol Y t Y pes • Out to 5.00 A fro mac en t r a lsi 1 i con (0 r carbon) atom four types of sites were characterized using symmetry based calculations. This method of polytype analysis was also considered, in the prelminary stages, for applications with other polytypic material; CdBr 2 , CdI 2 , and PbI 2 " In an attempt to understand the minor components of silicon carbide, such as its surface, some samples were hydrofluoric acid washed and heated to extreme temperatures. Basically, an HF removable species which absorbs at -110 ppm (Si0 2 ) in the 29 Si MAS nmr spectrum is found in silicon carbide after heating. Other unidentified peaks observed at short recycle delays in some 29 Si MAS nmr spectra are considered to be impurities that may be within the lattice. These components comprise less than 5% of the observable silicon. A Tl study was carried out for 29 Si nuclei in a 3C ii polytype sample, using the Driven Equilibrium Single-Pulse Observation of T1 (DESPOT) technique. It appears as though there are a number of nuclei that have the same chemical shift but different T1 relaxation times. The T1 values range from 30 seconds to 11 minutes. Caution has to be kept when interpreting these results because this is the first time that DESPOT has been used for solid samples and it is not likely in full working order. MAS nmr indicates that the 13C and 29 Si ~sotropic chemical shifts of silicon carbide appear to have a reciprocal type of relationship_ Single crystal nmr analysis of a 6H sample is accordance with this finding when only the resultant isotropic shift is considered. However, single crystal nmr also shows that the actual response of the silicon and carbon nuclear environment to the applied magnetic field at various angles is not at all reciprocal. Such results show that much more single crystal nmr work is required to determine the actual behavior of the local magnetic environment of the SiC nuclei.
Resumo:
To evaluate the effectiveness of a goal-setting model on behavioural change, thirty nine adults between the ages of23 and 73 years who were in a weight loss program were assigned to one oftwo groups. One group was taught to change eating behaviour using a weight-reducing diet. The other group was taught to use a goal-setting model to change behaviour. Pretest and posttest surveys were completed by all participants, and a callback survey by theexperimentals. The PET Type Check and Kolb's Learning Style Inventory were administered to all participants. As well, five ofthe experimentals were interviewed. Results of qualitative analyses showed no significant difference between the two groups, but qualitative research suggested that experimentals were more likely to use the goal-setting model to make behavioural changes, and that being successful increased their self-efficacy.