11 resultados para Tethered-ligand
em Brock University, Canada
Resumo:
One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.
Resumo:
Two efficient, regio- and stereo controlled synthetic approaches to the synthesis of racemic analogs of pancratistatin have been accomplished and they serve as the model systems for the total synthesis of optically active 7-deoxy-pancratistatin. In the Diels-Alder approach, an efficient [4+2] cycloaddition of 3,4-methylenedioxyco- nitrostyrene with Danishefsky's diene to selectively form an exo-nitro adduct has been developed as the key step in the construction of the C-ring of the target molecule. In the Michael addition approach, the key step was a conjugate addition of an organic zinc-cuprate to the 3,4-methylenedioxy-(B-nitrostyrene, followed by a diastereocontroUed closure to form the cyclohexane C-ring of the target molecule via an intramolecular nitro-aldol cyclization on a neutral alumina surface. A chair-like transition state for such a cyclization has been established and such a chelation controlled transition state can be useful in the prediction of diastereoselectivity in other related 6-exo-trig nitroaldol reactions. Cyclization of the above products fi^om both approaches by using a Bischler-Napieralski type reaction afforded two lycoricidine derivatives 38 and 50 in good yields. The initial results from the above modeling studies as well as the analysis of the synthetic strategy were directed to a chiral pool approach to the total synthesis of optically active 7-deoxy-pancratistatin. Selective monsilylation and iodination of Ltartaric acid provided a chiral precursor for the proposed key Michael transformation. The outlook for the total synthesis of 7-deoxy-pancratistatin by this approach is very promising.A concise synthesis of novel designed, optically pure, Cz-symmetrical disulfonylamide chiral ligands starting from L-tartaric acid has also been achieved. This sequence employs the metallation of indole followed by Sfj2 replacement of a dimesylate as the key step. The activity for this Cz-symmetric chiral disulfonamide ligand in the catalytic enantioselective reaction has been confirmed by nucleophilic addition to benzaldehyde in the disulfonamide-Ti (0-i-Pr)4-diethylzinc system with a 48% yield and a 33% e.e. value. Such a ligand tethered with a suitable metal complex should be also applicable towards the total synthesis of 7-deoxy-pancratistatin.
Resumo:
Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).
Resumo:
Catalase dismutes H20 2 to O2 and H20. In successive twoelectron reactions H20 2 induces both oxidation and reduction at the heme group. In the first step the protoheme prosthetic group of beef liver catalase forms compound I, in which the heme has been oxidized from Fe3+ to Fe4+=0 and a porphyrin radical has been created. Compound II is formed by the oneelectron reduction of comp I. It retains Fe4+=0 but lacks the porphyrin radical and is catalytically inert. Molecular structures are available for Escherichia coli Hydroperoxidase II, Micrococcus Iysodeiktus, Penicillium vitale and beef liver enzymes, which contain different hemes and heme pockets. In the present work, the pockets and substrate access channels of protoheme (beef liver & Micrococcus) and heme d (HPII of E. coli and Penicillium) catalases have been analysed using Quanta™ and CharmMTM molecular modeling packages on the Silicon Graphics Iris Indigo 2 computer. Experimental studies have been carried out with two catalases, HPII (and its mutants) and beef liver. Fluoride and formate' are inhibitors of both enzymes, and their binding is modulated by the heme and by distal residues N201 & H128. Both HPII and beef liver enzymes form compound I with H202 or peracetate. The reduction of beef liver enzyme compound I to II and the decay of compound II are accelerated by fluoride. The decay of compound II is also accelerated by formate, and this reagent acts as a 2-electron donor towards compound I of both enzymes. It is concluded that heme d enzymes (Penicillium and HPII of E. coli) are formed by autocatalytic transformation of protoheme in a modified pocket which contains a characteristic serine residue as well as a partially occluded heme channel. They are less active than protoheme enzymes but also do not form the inactive compound II species. Binding of peroxide as well as fluoride and formate is prevented by mutation of H128 and modulated by mutation of N201.
Resumo:
A number of metal complexes containing the ligand 5,5,7,12,12,14-hexamethyl-l,4,8,11-tetra-azatetradecane were synthesized and analyzed using electron impact (EI) and fast atom bombardment (FAB). The FAB mass spectra were obtained in positive and negative ion mode. FAB in the positive ion mode proved to be the most successful technique for the identification of these compounds. In the majority of cases the spectra obtained using positive ion FAB were structurally informative, although not all showed molecular (M+) or quasimolecular ([M+H]+) ions. The fragmentations observed were characteristic of the ligands, and were interpreted based on the chemistry of these compounds.
Resumo:
The cocondensation of nickel with a number of unsaturated ligands was studied, as was the cocondensation with a number of mixed ligand systems. Enamines were found not to react with nickel while acrylonitrile was polymerized. In the mixed ligand syst.ems different products were obtained than when the ligands were cocondensed individually. Cocondensations of benzyl halide/allyl halide mixtures gave unstable products that were not observed when the halides were cocondensed individually. The effect of Kao-Wool insulation on nickel/benzyl halide cocondensations was found to be significant. Kao-Wool caused the bulk of the benzyl halide to be polymeri zed to a number of poly-benzylic species. An alkali metal reactor was designed for the evaporation of sodium and potassium atoms into cold solutions of metal halide and an or ganic substrate. This apparatus was used to synthesize Ni(P¢3 )3' but proved unsuccessful for synthesizing a nickel-enamine compound.
Resumo:
Since its discovery nearly a century ago, a-tocopherol (vitamin E) research has been mainly focused on its ability to terminate the cycle of lipid peroxidation in membranes. Nitrobenzoxadiazole fluorescent analogues were made previously to study the intracellular transfer of vitamin E in cells. However, these molecules were reportedly susceptible to photobleaching while under illumination for transfer assays and microscopy. Here is reported the synthesis of a series of fluorescent analogues of vitamin E incorporating the more robust dipyrrometheneboron difluoride fluorophore (BDP-a-Tocs; Aex = 507 nm, Aem = 511 nm). C8-BDP-a-Toc 42c, having an eight-carbon chain between the chromanol and fluorophore, wa<; shown to bind specifically to a-tocopherol transfer protein with a dissociation constant of approximately 100 nM. Another fluorescent analogue of vitamin E with a thienyl derivative of BODIPY that is excited and fluoresces at longer wavelengths (Aex = 561 nm, Aem = 570 nm) is in development.
Resumo:
Work in the area of molecule-based magnetic and/or conducting materials is presented in two projects. The first project describes the use of 4,4’-bipyridine as a scaffold for the preparation of a new family of tetracarboxamide ligands. Four new ligands I-III have been prepared and characterized and the coordination chemistry of these ligands is presented. This project was then extended to exploit 4,4’-bipyridine as a covalent linker between two N3O2 macrocyles. In this respect, three dimeric macrocycles have been prepared IV-VI. Substitution of the labile axial ligands of the Co(II) complex IV by [Fe(CN)6]4- afforded the self-assembly of the 1-D polymeric chain {[Co(N3O2)H2O]2Fe(CN)6}n•3H2O that has been structurally and magnetically characterized. Magnetic studies on the Fe(II) complexes V and VI indicate that they undergo incomplete spin crossover transitions in the solid state. Strategies for the preparation of chiral spin crossover N3O2 macrocycles are discussed and the synthesis of the novel chiral Fe(II) macrocyclic complex VII is reported. Magnetic susceptibility and Mössbauer studies reveal that this complex undergoes a gradual spin crossover in the solid state with no thermal hysteresis. Variable temperature X-ray diffraction studies on single crystals of VII reveal interesting structural changes in the coordination geometry of the macrocycle accompanying its SCO transition. The second project reports the synthesis and characterization of a new family of tetrathiafulvalene derivatives VIII – XII, where a heterocyclic chelating ligand is appended to a TTF donor via an imine linker. The coordination chemistries of these ligands with M(hfac)2.H2O (M( = Co, Ni, Mn, Cu) have been explored and the structural and magnetic properties of these complexes are described.
Resumo:
(A) Most azobenzene-based photoswitches require UV light for photoisomerization, which limit their applications in biological systems due to possible photodamage. Cyclic azobenzene derivatives, on the other hand, can undergo cis-trans isomerization when exposed to visible light. A shortened synthetic scheme was developed for the preparation of a building block containing cyclic azobenzene and D-threoninol (cAB-Thr). trans-Cyclic azobenzene was found to thermally isomerize back to the cis-form in a temperature-dependent manner. cAB-Thr was transformed into the corresponding phosphoramidite and subsequently incorporated into oligonucleotides by solid phase synthesis. Melting temperature measurement suggested that incorporation of cis-cAB into oligonucleotides destabilizes DNA duplexes, these findings corroborate with circular dichroism measurement. Finally, Fluorescent Energy Resonance Transfer experiments indicated that trans-cAB can be accommodated in DNA duplexes. (B) Inverse Electron Demand Diels-Alder reactions (IEDDA) between trans-olefins and tetrazines provide a powerful alternative to existing ligation chemistries due to its fast reaction rate, bioorthogonality and mutual orthogonality with other click reactions. In this project, an attempt was pursued to synthesize trans-cyclooctene building blocks for oligonucleotide labeling by reacting with BODIPY-tetrazine. Rel-(1R-4E-pR)-cyclooct-4-enol and rel-(1R,8S,9S,4E)-Bicyclo[6.1.0]non-4-ene-9-ylmethanol were synthesized and then transformed into the corresponding propargyl ether. Subsequent Sonogashira reactions between these propargylated compounds with DMT-protected 5-iododeoxyuridine failed to give the desired products. Finally a methodology was pursued for the synthesis of BODIPY-tetrazine conjugates that will be used in future IEDDA reactions with trans-cyclooctene modified oligonucleotides.
Resumo:
Human Class I phosphatidylinositol transfer proteins (PITPs) exists in two forms: PITPα and PITPβ. PITPs are believed to be lipid transfer proteins based on their capacity to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments in vitro. In Drosophila, the PITP domain is found to be part of a multi-domain protein named retinal degeneration B (RdgBα). The PITP domain of RdgBα shares 40 % sequence identity with PITPα and has been shown to possess PI and PC binding and transfer activity. The detailed molecular mechanism of ligand transfer by the human PITPs and the Drosophila PITP domain remains to be fully established. Here, we investigated the membrane interactions of these proteins using dual polarization interferometry (DPI). DPI is a technique that measures protein binding affinity to a flat immobilized lipid bilayer. In addition, we also measured how quickly these proteins transfer their ligands to lipid vesicles using a fluorescence resonance energy transfer (FRET)-based assay. DPI investigations suggest that PITPβ had a two-fold higher affinity for membranes compared to PITPα. This was reflected by a four-fold faster ligand transfer rate for PITPβ in comparison to PITPα as determined by the FRET assay. Interestingly, DPI analysis also demonstrated that PI-bound human PITPs have lower membrane affinity compared to PC-bound PITPs. In addition, the FRET studies demonstrated the significance of membrane curvature in the ligand transfer rate of PITPs. The ligand transfer rate was higher when the accepting vesicles were highly curved. Furthermore, when the accepting vesicles contained phosphatidic acid (PA) which have smaller head groups, the transfer rate increased. In contrast, when the accepting vesicles contained phosphoinositides which have larger head groups, the transfer rate was diminished. However, PI, the favorite ligand of PITPs, or the presence of anionic lipids did not appear to influence the ligand transfer rate of PITPs. Both DPI and FRET examinations revealed that the PITP domain of RdgBα was able to bind to membranes. However, the RdgBα PITP domain appears to be a poor binder and transporter of PC.
Resumo:
This thesis describes two different approaches for the preparation of polynuclear clusters with interesting structural, magnetic and optical properties. Firstly, exploiting p-tert-butylcalix[4]arene (TBC4) macrocycles together with selected Ln(III) ions for the assembly of emissive single molecule magnets, and secondly the preparation and coordination of a chiral mpmH ligand with selected 3d transition metal ions, working towards the discovery of chiral polynuclear clusters. In Project 1, the coordination chemistry of the TBC4 macrocycle together with Dy(III) and Tb(III) afforded two Ln6[TBC4]2 complexes that have been structurally, magnetically and optically characterized. X-ray diffraction studies reveal that both complexes contain an octahedral core of Ln6 ions capped by two fully deprotonated TBC4 macrocycles. Although the unit cells of the two complexes are very similar, the coordination geometries of their Ln(III) ions are subtly different. Variable temperature ac magnetic susceptibility studies reveal that both complexes display single molecule magnet (SMM) behaviour in zero dc field and the energy barriers and associated pre-exponential factors for each relaxation process have been determined. Low temperature solid state photoluminescence studies reveal that both complexes are emissive; however, the f-f transitions within the Dy6 complex were masked by broad emissions from the TBC4 ligand. In contrast, the Tb(III) complex displayed green emission with the spectrum comprising four sharp bands corresponding to 5D4 → 7FJ transitions (where J = 3, 4, 5 and 6), highlighting that energy transfer from the TBC4 macrocycle to the Tb(III) ion is more effective than to Dy. Examples of zero field Tb(III) SMMs are scarce in the chemical literature and the Tb6[TBC4]2 complex represents the first example of a Tb(III) dual property SMM assembled from a p-tert-butylcalix[4]arene macrocycle with two magnetically derived energy barriers, Ueff of 79 and 63 K. In Project 2, the coordination of both enantiomers of the chiral ligand, α-methyl-2-pyridinemethanol (mpmH) to Ni(II) and Co(II) afforded three polynuclear clusters that have been structurally and magnetically characterized. The first complex, a Ni4 cluster of stoichiometry [Ni4(O2CCMe3)4(mpm)4]·H2O crystallizes in a distorted cubane topology that is well known in Ni(II) cluster chemistry. The final two Co(II) complexes crystallize as a linear mixed valence trimer with stoichiometry [Co3(mpm)6]·(ClO4)2, and a Co4 mixed valence complex [Co(II)¬2Co(III)2(NO3)2(μ-mpm)4(ONO2)2], whose structural topology resembles that of a defective double cubane. All three complexes crystallize in chiral space groups and circular dichroism experiments further confirm that the chirality of the ligand has been transferred to the respective coordination complex. Magnetic susceptibility studies reveal that for all three complexes, there are competing ferro- and antiferromagnetic exchange interactions. The [Co(II)¬2Co(III)2(NO3)2(μ-mpm)4(ONO2)2] complex represents the first example of a chiral mixed valence Co4 cluster with a defective double cubane topology.