4 resultados para Temporal-lobe
em Brock University, Canada
Resumo:
Although local grape growers view bird depredation as a significant economic issue, the most recent research on the problem in the Niagara Peninsula is three decades old. Peer-reviewed publications on the subject are rare, and researchers have struggled to develop bird-damage assessment techniques useful for facilitating management programmes. I used a variation of Stevenson and Virgo's (1971) visual estimation procedure to quantify spatial and temporal trends in bird damage to grapes within single vineyard plots at two locations near St. Catharines, Ontario. I present a novel approach to managing the rank-data from visual estimates, which is unprecedented in its sensitivity to spatial trends in bird damage. I also review its valid use in comparative statistical analysis. Spatial trends in 3 out of 4 study plots confirmed a priori predictions about localisation in bird damage based on optimal foraging from a central location (staging area). Damage to grape clusters was: (1) greater near the edges of vineyard plots and decreased with distance towards the center, (2) greater in areas adjacent to staging areas for birds, and (3) vertically stratified, with upper-tier clusters sustaining more damage than lower-tier clusters. From a management perspective, this predictive approach provides vineyard owners with the ability to identify the portions of plots likely to be most susceptible to bird damage, and thus the opportunity to focus deterrent measures in these areas. Other management considerations at Henry of Pelham were: (1) wind damage to ice-wine Riesling and Vidal was much higher than bird damage, (2) plastic netting with narrow mesh provided more effective protection agsiinst birds than nylon netting with wider mesh, and (3) no trends in relative susceptibility of varietals by colour (red vs green) were evident.
Resumo:
A series of permanent line transects established on fourteen reefs on the eastern seaboard of the Gulf of Thailand were monitored through a three-year period (1995- 1998) using a video transect method. Hierarchical cluster analysis shows three distinctive reef community types dominated by 1) Porites, 2) Acropora and 3) zoantharians. The reefs are developed under naturally turbid conditions and relatively low salinity due to the proximity of four major river outlets located in the uppermost area of the gulf. The number of Acroporid species on the reefs is positively correlated with distance from the major flver outlets. Eighty-seven species of scleractinian coral were found on the transects. Over the three-year period, the comparison of 1995-97-98 matched stations using Repeated Measures ANOV A reveals no significant time-dependent change in percent area cover of reef components except for an overall significant reduction in the faviid coral component. In the 1997-98 matched station comparison, statistical tests reveal significant increases in both Acropora and Porites components that translated into an overall increase in total living coral cover. These findings indicate that the overall environmental conditions have been favorable for coral growth. Outcompetition of massive corals by faster growing corals on several reefs also indicates conditions favorable for reef expansion. Growth of newlyformed Porites colonies over primary rock substrate and dead coral skeleton was presumably responsible for its rapid increase. Although these reefs are in an area of rapid industrialization and population growth, resultant anthropogenic effects have not yet stopped active coral accretion.
Resumo:
Female enthusiasm towards engaging in physical education (PE) significantly decreases with age as it provides females with positive and negative emotional experiences. This study examined emotions within four grade nine female PE soccer and fitness classes (N = 67). Emotional patterns were studied over time and across two units of instruction and in relation to student grades. A mixed-method approach was utilized assessing the state emotions of shame, enjoyment, anxiety, and social physique anxiety (SPA). Results revealed unsatisfactory internal consistency for shame and thus it was removed. Statistical analysis revealed no significant changes in emotions over time, whereas qualitative analysis found that state emotions were inconsistent. Statistical analysis indicated that students in the fitness classes reported significantly higher levels of anxiety and SPA on the final class (p < .01). Qualitative analysis signaled different origins and themes of students‟ emotions. No predictive relationship between emotion and students‟ grade was found.
Resumo:
Imaging studies have shown reduced frontal lobe resources following total sleep deprivation (TSD). The anterior cingulate cortex (ACC) in the frontal region plays a role in performance monitoring and cognitive control; both error detection and response inhibition are impaired following sleep loss. Event-related potentials (ERPs) are an electrophysiological tool used to index the brain's response to stimuli and information processing. In the Flanker task, the error-related negativity (ERN) and error positivity (Pe) ERPs are elicited after erroneous button presses. In a Go/NoGo task, NoGo-N2 and NoGo-P3 ERPs are elicited during high conflict stimulus processing. Research investigating the impact of sleep loss on ERPs during performance monitoring is equivocal, possibly due to task differences, sample size differences and varying degrees of sleep loss. Based on the effects of sleep loss on frontal function and prior research, it was expected that the sleep deprivation group would have lower accuracy, slower reaction time and impaired remediation on performance monitoring tasks, along with attenuated and delayed stimulus- and response-locked ERPs. In the current study, 49 young adults (24 male) were screened to be healthy good sleepers and then randomly assigned to a sleep deprived (n = 24) or rested control (n = 25) group. Participants slept in the laboratory on a baseline night, followed by a second night of sleep or wake. Flanker and Go/NoGo tasks were administered in a battery at 1O:30am (i.e., 27 hours awake for the sleep deprivation group) to measure performance monitoring. On the Flanker task, the sleep deprivation group was significantly slower than controls (p's <.05), but groups did not differ on accuracy. No group differences were observed in post-error slowing, but a trend was observed for less remedial accuracy in the sleep deprived group compared to controls (p = .09), suggesting impairment in the ability to take remedial action following TSD. Delayed P300s were observed in the sleep deprived group on congruent and incongruent Flanker trials combined (p = .001). On the Go/NoGo task, the hit rate (i.e., Go accuracy) was significantly lower in the sleep deprived group compared to controls (p <.001), but no differences were found on false alarm rates (i.e., NoGo Accuracy). For the sleep deprived group, the Go-P3 was significantly smaller (p = .045) and there was a trend for a smaller NoGo-N2 compared to controls (p = .08). The ERN amplitude was reduced in the TSD group compared to controls in both the Flanker and Go/NoGo tasks. Error rate was significantly correlated with the amplitude of response-locked ERNs in control (r = -.55, p=.005) and sleep deprived groups (r = -.46, p = .021); error rate was also correlated with Pe amplitude in controls (r = .46, p=.022) and a trend was found in the sleep deprived participants (r = .39, p =. 052). An exploratory analysis showed significantly larger Pe mean amplitudes (p = .025) in the sleep deprived group compared to controls for participants who made more than 40+ errors on the Flanker task. Altered stimulus processing as indexed by delayed P3 latency during the Flanker task and smaller amplitude Go-P3s during the Go/NoGo task indicate impairment in stimulus evaluation and / or context updating during frontal lobe tasks. ERN and NoGoN2 reductions in the sleep deprived group confirm impairments in the monitoring system. These data add to a body of evidence showing that the frontal brain region is particularly vulnerable to sleep loss. Understanding the neural basis of these deficits in performance monitoring abilities is particularly important for our increasingly sleep deprived society and for safety and productivity in situations like driving and sustained operations.