5 resultados para Technique de l’anneau piézoélectrique (P-RAT)
em Brock University, Canada
Resumo:
Intracerebroventricular (ICV) administration of bombesin (BN) induces a
syndrome characterized by stereotypic locomotion and grooming,
hyperactivity and sleep elimination, hyperglycemia and hypothermia,
hyperhemodynamics, feeding inhibition, and gastrointestinal function
changes. Mammalian BN-like peptides (MBNs), e.g. gastrin-releasing
peptide (GRP), Neuromedin C (NMC), and Neuromedin B (NMB), have been
detected in the central nervous system. Radio-labeled BN binds to specific
sites in discrete cerebral regions. Two specific BN receptor subtypes (GRP
receptor and NMB receptor) have been identified in numerous brain regions.
The quantitative 2-[14C]deoxyglucose ([14C]20G) autoradiographic
method was used to map local cerebral glucose utilization (LCGU) in the
rat brain following ICV injection of BN (vehicle, BN O.1Jlg, O.5Jlg). At each
dose, experiments were conducted in freely moving or restrained
conditions to determine whether alterations in cerebral function were the
result of BN central administration, or were the result of BN-induced
motor stereotypy. The anteroventral thalamic nucleus (AV) (p=O.029),
especially its ventrolateral portion (AVVL) (p
Resumo:
Order parameter profiles extracted from the NMR spectra of model membranes are a valuable source of information about their structure and molecular motions. To al1alyze powder spectra the de-Pake-ing (numerical deconvolution) ~echnique can be used, but it assumes a random (spherical) dist.ribution of orientations in the sample. Multilamellar vesicles are known to deform and orient in the strong magnetic fields of NMR magnets, producing non-spherical orientation distributions. A recently developed technique for simultaneously extracting the anisotropies of the system as well as the orientation distributions is applied to the analysis of partially magnetically oriented 31p NMR spectra of phospholipids. A mixture of synthetic lipids, POPE and POPG, is analyzed to measure distortion of multilamellar vesicles in a magnetic field. In the analysis three models describing the shape of the distorted vesicles are examined. Ellipsoids of rotation with a semiaxis ratio of about 1.14 are found to provide a good approximation of the shape of the distorted vesicles. This is in reasonable agreement with published experimental work. All three models yield clearly non-spherical orientational distributions, as well as a precise measure of the anisotropy of the chemical shift. Noise in the experimental data prevented the analysis from concluding which of the three models is the best approximation. A discretization scheme for finding stability in the algorithm is outlined
Resumo:
Hypo-osmolality influences tissue metabolism, but research on protein turnover in skeletal muscle is limited. The purpose of this investigation was to examine the effects of hypo-osmotic stress on protein turnover in rat skeletal muscle. We hypothesized increased protein synthesis and reduced degradation following hypo-osmotic exposure. EDL muscles (n=8/group) were incubated in iso-osmotic (290 Osm/kg) or hypo-osmotic (190 Osm/kg) modified medium 199 (95% O2, 5% CO2, pH 7.4, 30±2 °C) for 60 min, followed by 75 min incubations with L-U[14C]phenylalanine or cycloheximide to determine protein synthesis and degradation. Immunoblotting was performed to assess signalling pathways involved. Phenylalanine uptake and incorporation were increased by 199% and 169% respectively in HYPO from ISO (p < 0.05). This was supported by elevated phosphorylation of mTOR Ser2448 (+12.5%) and increased Thr389 phosphorylation on p70s6 kinase (+23.6%) (p < 0.05). Hypo-osmotic stress increased protein synthesis and potentially amino acid uptake. Future studies should examine the upstream mechanisms involved.
Resumo:
The ovariectomized (OVX) rat, a preclinical model for studying postmenopausal bone loss, may also be used to study differences in alveolar bone (AB). The objectives of this study were to quantify the differences in AB following estrogen replacement therapy (ERT), and to investigate the relationship between AB structure and density, and trabecular bone at the femoral neck (FN) and third lumbar vertebral body (LB3). Estrogen treated rats had a higher bone volume fraction (BV/TV) at the AB region (9.8% P < 0.0001), FN (12% P < 0.0001), and LB3 (11.5% P < 0.0001) compared to the OVX group. BV/TV of the AB was positively correlated with the BV/TV at the FN (r = 0.69 P < 0.0001) and the LB3 (r = 0.75 P < 0.0001). The trabecular number (Tb.N), trabecular separation (Tb.Sp), and structure model index (SMI) were also positively correlated (P < 0.05) between the AB and FN (r = 0.42, 0.49, and 0.73, respectfully) and between the AB and LB3 (r = 0.44, 0.63, and 0.69, respectfully). Given the capacity of AB to respond to ERT, future preclinical drug/nutritional intervention studies aimed at improving skeletal health should include the AB as a region of interest (ROI).
Resumo:
Studies have demonstrated that the oxysterol binding protein (OSBP) acts as a phosphatidylinositol phosphate (PIP)-sterol exchanger at membrane contact sites (MCS) of the endoplasmic reticulum (ER) and Golgi. OSBP is known to pick up phosphatidylinositol-4-phosphate (PI(4)P) from the ER, transfer it to the trans-Golgi in exchange for a cholesterol molecule that is then transferred from the trans-Golgi to the ER. Upon further examination of this pathway by Ridgway et al. (1), it appeared that phosphorylation of OSBP played a role in the localization of OSBP. The dephosphorylation state of OSBP was linked to Golgi localization and the depletion of cholesterol at the ER. To mimic the phosphorylated state of OSBP, the mutant OSBP-S5E was designed by Ridgway et al. (1). The lipid and sterol recognition by wt-OSBP and its phosphomimic mutant OSBP-S5E were investigated using immobilized lipid bilayers and dual polarization interferometry (DPI). DPI is a technique in which the protein binding affinity to immobilized lipid bilayers is measured and the binding behavior is examined through real time. Lipid bilayers containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and varying concentrations of PI(4)Ps or sterols (cholesterol or 25-hydroxycholesterol) were immobilized on a silicon nitride chip. It was determined that wt-OSBP binds differently to PI(4)P-containing bilayers compared to OSBP-S5E. The binding behavior suggested that wt-OSBP extracts PI(4)P and the change in the binding behavior, in the case of OSBP-S5E, suggested that the phosphorylation of OSBP may prevent the recognition and/or extraction of PI(4)P. In the presence of sterols, the overall binding behavior of OSBP, regardless of phosphorylation state, was fairly similar. The maximum specific bound mass of OSBP to sterols did not differ as the concentration of sterols increased. However, comparing the maximum specific bound mass of OSBP to cholesterol with oxysterol (25-hydroxycholesterol), OSBP displayed nearly a 2-fold increase in bound mass. With the absence of the wt-OSBP-PI(4)P binding behavior, it can be speculated that the sterols were not extracted. In addition, the binding behavior of OSBP was further tested using a fluorescence based binding assay. Using 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (22-NBD cholesterol), wt-OSBP a one site binding dissociation constant Kd, of 15 ± 1.4 nM was determined. OSBP-S5E did not bind to 22-NBD cholesterol and Kd value was not obtained.