6 resultados para TROPHIC CASCADES
em Brock University, Canada
Resumo:
Relationships between surface sediment diatom assemblages and lake trophic status were studied in 50 Canadian Precambrian Shield lakes in the Muskoka-Haliburton and southern Ontario regions. The purpose of this study was to develop mathematical regression models to infer lake trophic status from diatom assemblage data. To achieve this goal, however, additional investigations dealing with the evaluation of lake trophic status and the autecological features of key diatom species were carried out. Because a unifying index and classification for lake trophic status was not available, a new multiple index was developed in this study, by the computation of the physical, chemical and biological data from 85 south Ontario lakes. By using the new trophic parameter, the lake trophic level (TL) was determined: TL = 1.37 In[1 +(TP x Chl-a / SD)], where, TP=total phosphorus, Chl-a=chlorophyll-a and SD=Secchi depth. The boundaries between 7 lake trophic categories (Ultra-oligotrophic lakes: 0-0.24; Oligotrophic lakes: 0.241-1.8; Oligomesotrophic lakes: 1.813.0; Mesotrophic lakes: 3.01-4.20; Mesoeutrophic lakes: 4.21-5.4; Eutrophic lakes: 5.41-10 and Hyper-eutrophic lakes: above 10) were established. The new trophic parameter was more convenient for management of water quality, communication to the public and comparison with other lake trophic status indices than many of the previously published indices because the TL index attempts to Increase understanding of the characteristics of lakes and their comprehensive trophic states. It is more reasonable and clear for a unifying determination of true trophic states of lakes. Diatom specIes autecology analysis was central to this thesis. However, the autecological relationship of diatom species and lake trophic status had not previously been well documented. Based on the investigation of the diatom composition and variety of species abundance in 30 study lakes, the distribution optima of diatom species were determined. These determinations were based on a quantitative method called "weighted average" (Charles 1985). On this basis, the diatom species were classified into five trophic categories (oligotrophic, oligomesotrophic, mesotrophic, mesoeutrophic and eutrophic species groups). The resulting diatom trophic status autecological features were used in the regressIon analysis between diatom assemblages and lake trophic status. When the TL trophic level values of the 30 lakes were regressed against their fi ve corresponding diatom trophic groups, the two mathematical equations for expressing the assumed linear relationship between the diatom assemblages composition were determined by (1) uSIng a single regression technique: Trophic level of lake (TL) = 2.643 - 7.575 log (Index D) (r = 0.88 r2 = 0.77 P = 0.0001; n = 30) Where, Index D = (0% + OM% + M%)/(E% + ME% + M%); 4 (2) uSIng a' multiple regressIon technique: TL=4.285-0.076 0%- 0.055 OM% - 0.026 M% + 0.033 ME% + 0.065 E% (r=0.89, r2=0.792, P=O.OOOl, n=30) There was a significant correlation between measured and diatom inferred trophic levels both by single and multiple regressIon methods (P < 0.0001, n=20), when both models were applied to another 20 test lakes. Their correlation coefficients (r2 ) were also statistically significant (r2 >0.68, n=20). As such, the two transfer function models between diatoms and lake trophic status were validated. The two models obtained as noted above were developed using one group of lakes and then tested using an entirely different group of lakes. This study indicated that diatom assemblages are sensitive to lake trophic status. As indicators of lake trophic status, diatoms are especially useful in situations where no local trophic information is available and in studies of the paleotrophic history of lakes. Diatom autecological information was used to develop a theory assessing water quality and lake trophic status.
Resumo:
Extrait du Bulletin de la Société de sciences naturelles de Neuchätel, tome III.
Resumo:
Crawford Lake is a meromictic lake, which is 24 m deep and has an area of 2.5 ha, and has never been reported to have mixed below 16 m. Lady Evelyn Lake, which became a reservoir when a dam was built in 1916, is dimictic with a maximum depth of about 35 m. 1 My research proved that both native chlorophylls and the ratio of chlorophyll derivatives to total carotenoids were better preserved in the shallower lake (Crawford Lake) because it was meromictic. Thus the anaerobic conditions in Crawford Lake below 16 m (monimolimnion) provide excellent conditions for pigment preservation. Under such conditions, the preservation of both chlorophylls and carotenoids, including oscillaxanthin and myxoxanthophyll, are extremely good compared with those of Lady Evelyn Reservoir, in which anaerobic conditions are rarely encountered at the mud-water interface. During the period from 1500 to 1900 A. D. in Crawford Lake, the accumulation rates of oscillaxanthin and myxoxanthophyll were extremely high, but those of chlorophyll derivatives and total carotenoids were relatively low. This was correlated with the presence of a dense benthic mat of cyanobacteria near the lake's chemocline. Competition for light between the deep dwelling cyanobacteria and overlying phytoplankton in this meromictic lake would have been intensified as the lake became more and more eutrophic (1955-1991 A. D.). During the period from 1955 to 1991 A. D., the accumulation rates of chlorophyll derivatives and total carotenoids in the sediment core from Crawford Lake (0-7.5 cm, 1955-present) increased. During this same period, the accumulation rates of cyanobacterial pigments (Le. oscillaxanthin and myxoxanthophyll) declined as the lake became more eutrophic. Because the major cyanobacteria in Crawford Lake are benthic mat forming Lyngbya and Oscillatoria and not phytoplankton, eutrophication resulted in a decline of the mat forming algal pigments. This is important because in previous palaeolimnological studies the concentrations of oscillaxanthin and myxoxanthophyll have been used as correlates with lake trophic levels. The results of organic carbon a13c analysis on the Crawford Lake sediment core supported the conclusions from the pigment study as noted above. High values of a13c at the depth of 34-48 cm (1500-1760 A. D.) were related to a dense population of benthic Oscillatoria and Lyngbya living on the bottom of the lake during that period. The Oscillatoria and Lyngbya utilized the bicarbonate, which had a high a 13C value. Very low values were found at 0-7 cm in the Crawford sediment core. At this time phytoplankton was the main primary producer, which enriched 12C by photosynthetic assimilation.
Resumo:
Chicl( brain growth factor (CBGF) is a mitogen isolated from embryonic chick brains thought to have a potential role as a trophic factor involved in nerve dependent amphibian limb regeneration. In addition, CBGF stimulates 3H-thymidine incorporation in chick embryo brain astrocytes in vitro. In this study, cultured chick embryo brain non-neuronal cells were employed in a bioassay to monitor CBGF activity throughout various stages of its pllrification. Cell culture and assay conditions were optimized. Nonneuronal cells grew best on collagen-coated culture dishes in complete medium, were most responsive to a growth stimulus [10% fetal bovine serum (FBS)] at the second and third subcultures, and were healthiest when rendered "quiescent" in medium supplemented with 1% FBS. The most effective bioassay conditions consisted of a minimum 14.5 hour "quiescence" time (24 hours was used), a 6 hour "prestimulation" time, and a 24 hour 3H-thymidine labeling time. Four-day subconfluent primary non-neuronal cells consisted of 6.63% GFAP positive cells; as a result cultures were thought to be mainly composed of astroblasts. CBGF was purified from 18-day chick embryo brains by ultrafiltration through Amicon PM-30 and YM-2 membranes, size exclusion chromatography through a Biogel P6 column, and analytical reverse-phase high-performance liquid chromatography (rp-HPLC). The greatest activity resided in rp-HPLC fraction #7 (10 ng/ml) which was as effective as 10% FBS at stimulating 3H-thymidine incorporation in chick embryo brain nonneuronal cells. Although other researchers report the isolation of a mitogenic fraction consisting of 5'-GMP from the embryonic chick brain, UV absorbance spectra, rp-HPLC elution profiles, and fast atom bombardment (FAB) mass spectra indicated that CBGF is neither 5'-GMP nor 51-AMP. 2 Moreover, commercially available 5t-GMP was inhibitory to 3H-thymidine incorporation in the chick non-neuronal cells, while Sf-AMP had no effect. Upon treatment with pronase, the biological activity of fraction P6-3 increased; this increase was nearly 30% greater than what would be expected from a simple additive effect of any mitogenic activity of pronase alone together with P6-3 alone. This may suggest the presence of an inhibitor protein. The bioactive component may be a protein protected by a nucleoside/nucleotide or simply a nucleoside/nucleotide acting alone. While the FAB mass spectrum of rp-HPLC fraction #7 did not reveal molecular weight or sequence information, the ion of highest molecular weight was observed at m/z 1610; this is consistent with previous estimations of CBGF's size. 3
Resumo:
The purpose of this study was to develop a classifi cation scheme for l ake trophic status based on the relative abundance of l ake sediment diatom trophic indicator species. A total of 600 diatom frustules were counted from the surface sediments of e a ch of 30 lakes selected to repr e seni~ a continuum from u.lt ra-oligotrophic t,o fairly eutrophic but not hype r-' eutrophic conditions. Published autecological information was used to determine the trophic indicator status of each of the s pecies. A quotieht was derived by dividing the s um of all the e utrophic indicator species by the sum of all oligotrophic indicai.-:.or species. Oligo'- mesotrophic. mesotrophic and meso-eutrophic species were added to both the numerator and denomina tor. Five categories of diatom i.nferred trophic status were recognized : ultra-oligotrophic - 0'-0.2:3, oligotrophic::: 0.24-0 . 70, mesotrophic :: 0.'71 -0.99, meso-elxtrophic :: 1. 00-1. '78 and eutrophic:: 1.. 79-2. 43. But only three of these (oligotrophic:: 0-0.69, mesotrophic ::: 0 . 70'-1.69 j and eutrophic:: 1.70-2.50) proved usef ul. The present study of the relationship between diatom inferred trophic status and the literature-derived trophic status of SO lake s (which were purposely chosen to represent a broad spectrum of lakes in Canada) indicated that: 1) Based on diatom species (assemblages ) it is possible to segregate the lakes from which. th",)se diatoms were taken into three basic categories : o ligotrophic, mesotrophic and eutrophic lake types. ~~) It was not possible t,o separate meso-eutrophic and o l igo-mesotrophic lakes f rom mesotrophic l akes as the the degree of overlap betwee n the diat,om species in these lake types was extremely high. 3) Ha d mo r e ul tra-oligotroph,ic lakes been sampled it might have been possible to more a ccurately s eparate them f rom oligotrophic Jakes. 4 ) Had. more humic lakes been sampled in this s tudy I f eel it would have been possible to identify a unique diatom a ssemblage which would h a ve chara cterized t his lake type . Re gression analyses were performed using the aforementioned diatom inferred trophic index as a f unction of 1) log Sec chi transparency (r = - 0.70) 2) total phosphorus (r = 0. 77 ) and 3) chlorophyll-a (r = 0.74). Once e ach of these rel ationships had been established , it was possible to infer paleotrophic (downcore) changes in an oligotrophic lake (Barbara Lake) and in a eutrophic lake (Chemung Lake) . Barbara Llake was dominated by oligotrophic s pecies and remained oligotrophic throughout the 200-·year history r epresented by i t s 32 em long sediment core. Chemung Lake is currently dominated. by eutrophic species but went through a mesotrophic st,age which was associated with a rise in the water level of the lake followi n g dam construction in its watershed in the early 1.900 J ::;. This was followed by its reversion to it,s present day eutrophic stage (dominated by eutrophic species) possibly as a r esult of shallowing process which can be attributed to " silting' up" of the reservoir and the invasion of the l ake by Myriophyllum spjcatum (Eurasian milfoil) i n the 1970's . In addition, nutrient .:r':l.ch run"'offwhich resulted from increased human a.ctivities associated with cottage development along its shores has contribut ed to its eutrophication. There is some evidence that the rat,e o :f its prog ressive eutrophication has declined during the last decade. This was correlated with legislation enacted in the 60's and 70's in Ontario which was aimed at reducing nutrient loading from cottages.
Resumo:
The active metabolite of vitamin A, retinoic acid (RA), is involved in memory formation and hippocampal plasticity in vertebrates. A similar role for retinoid signaling in learning and memory formation has not previously been examined in an invertebrate species. However, the conservation of retinoid signaling between vertebrates and invertebrates is supported by the presence of retinoid signaling machinery in invertebrates. For example, in the mollusc Lymnaea stagnalis the metabolic enzymes and retinoid receptors have been cloned from the CNS. In this study I demonstrated that impairing retinoid signaling in Lymnaea by either inhibiting RALDH activity or using retinoid receptor antagonists, prevented the formation of long-term memory (LTM). However, learning and intermediate-term memory were not affected. An additional finding was that exposure to constant darkness (due to the light-sensitive nature of RA) itself enhanced memory formation. This memory-promoting effect of darkness was sufficient to overcome the inhibitory effects of RALDH inhibition, but not that of a retinoid receptor antagonist, suggesting that environmental light conditions may influence retinoid signaling. Since RA also influences synaptic plasticity underlying hippocampal-dependent memory formation, I also examined whether RA would act in a trophic manner to influence synapse formation and/or synaptic transmission between invertebrate neurons. However, I found no evidence to support an effect of RA on post-tetanic potentiation of a chemical synapse. Retinoic acid did, however, reduce transmission at electrical synapses in a cell-specific manner. Overall, these studies provide the first evidence for a role of RA in the formation of implicit long-term memories in an invertebrate species and suggest that the role of retinoid signaling in memory formation has an ancient origin.