2 resultados para TOPOLOGICAL INDEXES

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For predicting future volatility, empirical studies find mixed results regarding two issues: (1) whether model free implied volatility has more information content than Black-Scholes model-based implied volatility; (2) whether implied volatility outperforms historical volatilities. In this thesis, we address these two issues using the Canadian financial data. First, we examine the information content and forecasting power between VIXC - a model free implied volatility, and MVX - a model-based implied volatility. The GARCH in-sample test indicates that VIXC subsumes all information that is reflected in MVX. The out-of-sample examination indicates that VIXC is superior to MVX for predicting the next 1-, 5-, 10-, and 22-trading days' realized volatility. Second, we investigate the predictive power between VIXC and alternative volatility forecasts derived from historical index prices. We find that for time horizons lesser than 10-trading days, VIXC provides more accurate forecasts. However, for longer time horizons, the historical volatilities, particularly the random walk, provide better forecasts. We conclude that VIXC cannot incorporate all information contained in historical index prices for predicting future volatility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we consider the properties of planar topological defects in unconventional superconductors. Specifically, we calculate microscopically the interaction energy of domain walls separating degenerate ground states in a chiral p-wave fermionic superfluid. The interaction is mediated by the quasiparticles experiencing Andreev scattering at the domain walls. As a by-product, we derive a useful general expression for the free energy of an arbitrary nonuniform texture of the order parameter in terms of the quasiparticle scattering matrix. The thesis is structured as follows. We begin with a historical review of the theories of superconductivity (Sec. 1.1), which led the way to the celebrated Bardeen-Cooper- Schrieffer (BCS) theory (Sec. 1.3). Then we proceed to the treatment of superconductors with so-called "unconventional pairing" in Sec. 1.4, and in Sec. 1.5 we introduce the specific case of chiral p-wave superconductivity. After introducing in Sec. 2 the domain wall (DW) model that will be considered throughout the work, we derive the Bogoliubov-de Gennes (BdG) equations in Sec. 3.1, which determine the quasiparticle excitation spectrum for a nonuniform superconductor. In this work, we use the semiclassical (Andreev) approximation, and solve the Andreev equations (which are a particular case of the BdG equations) in Sec. 4 to determine the quasiparticle spectrum for both the single- and two-DW textures. The Andreev equations are derived in Sec. 3.2, and the formal properties of the Andreev scattering coefficients are discussed in the following subsection. In Sec. 5, we use the transfer matrix method to relate the interaction energy of the DWs to the scattering matrix of the Bogoliubov quasiparticles. This facilitates the derivation of an analytical expression for the interaction energy between the two DWs in Sec. 5.3. Finally, to illustrate the general applicability our method, we apply it in Sec. 6 to the interaction between phase solitons in a two-band s-wave superconductor.