4 resultados para TGA2 phosphorylation, protein kinase CK2
em Brock University, Canada
Resumo:
During infection, the model plant Arabidopsis thaliana is capable of activating long lasting defence responses both in tissue directly affected by the pathogen and in more distal tissue. Systemic acquired resistance (SAR) is a type of systemic defence response deployed against biotrophic pathogens resulting in altered plant gene expression and production of antimicrobial compounds. One such gene involved in plant defence is called pathogenesis-related 1 (PR1) and is under the control of several protein regulators. TGA II-clade transcription factors (namely TGA2) repress PR1 activity prior to infection by forming large oligomeric complexes effectively blocking gene transcription. After pathogen detection, these complexes are dispersed by a mechanism unknown until now and free TGA molecules interact with the non-expressor of pathogenesis-related gene 1 (NPR1) protein forming an activating complex enabling PR1 transcription. This study elucidates the TGA2 dissociation mechanism by introducing protein kinase CK2 into this process. This enzyme efficiently phosphorylates TGA2 resulting in two crucial events. Firstly, the DNA-binding ability of this transcription factor is completely abolished explaining how the large TGA2 complexes are quickly evicted from the PR1 promoter. Secondly, a portion of TGA2 molecules dissociate from the complexes after phosphorylation which likely makes them available for the formation of the TGA2-NPR1 activating complex. We also show that phosphorylation of a multiserine motif found within TGA2’s N terminus is responsible for the change of affinity to DNA, while modification of a single threonine in the leucine zipper domain seems to be responsible for deoligomerization. Despite the substantial changes caused by phosphorylation, TGA2 is still capable of interacting with NPR1 and these proteins together form a complex on DNA promoting PR1 transcription. Therefore, we propose a change in the current model of how PR1 is regulated by adding CK2 which targets TGA2 displacing it’s complexes from the promoter and providing solitary TGA2 molecules for assembly of the activating complex. Amino acid sequences of regions targeted by CK2 in Arabidopsis TGA2 are similar to those found in TGA2 homologs in rice and tobacco. Therefore, the molecular mechanism that we have identified may be conserved among various plants, including important crop species, adding to the significance of our findings.
Resumo:
Pyruvate dehydrogenase phosphatase (PDP) regulates carbohydrate oxidation through the pyruvate dehydrogenase (PDH) complex. PDP activates PDH, enabling increased carbohydrate flux towards oxidative energy production. In culture myoblasts, both PDP1 and PDP2 undergo covalent activation in response to insulin–stimulation by protein kinase C delta (PKCδ). Our objective was to examine the effect of insulin on PDP phosphorylation and PDH activation in skeletal muscle. Intact rat extensor digitorum longus muscles were incubated (oxygenated at 25°C, 1g of tension) for 30min in basal or insulin–stimulated (10 mU/mL) media. PDH activity increased 58% following stimulation, (p=0.057, n=11). Serine phosphorylation of PDP1 (p=0.047) and PDP2 (p=0.006) increased by 29% and 48%, respectively (n=8), and mitochondrial PKCδ protein content was enriched by 45% in response to stimulation (p=0.0009, n=8). These data suggest that the insulin–stimulated increase in PDH activity in whole tissue is mediated through mitochondrial migration of PKCδ and subsequent PDP phosphorylation.
Resumo:
Resveratrol, a polyphenol found in red wine, has been reported to have
antithrombotic, antiatherogenic, and anticancer properties both in vitro and III VIVO.
However, possible antidiabetic properties of resveratrol have not been examined. The
objective of this study was to investigate the direct effects of resveratrol on basal and
insulin-stimulated glucose uptake and to elucidate its mechanism of action in skeletal
muscle cells. In addition, the effects of resveratrol on basal and insulin- stimulated amino
acid transport and mitogenesis were also examined.
Fully differentiated L6 rat skeletal muscle cells were incubated with resveratrol
concentrations ranging from 1 to 250 IlM for 15 to 120 min. Maximum stimulation, 201
± 8.90% of untreated control, (p<0.001), of2eH] deoxy- D- glucose (2DG) uptake was
seen with 100 IlM resveratrol after 120 min. Acute, 30 min, exposure of the cells to 100
nM insulin stimulated 2DG uptake to 226 ± 12.52% of untreated control (p<0.001). This
appears to be a specific property of resveratrol that is not shared by structurally similar
antioxidants such as quercetin and rutin, both of which did not have any stimulatory
effect. Resveratrol increased the response of the cells to submaximal insulin
concentrations but did not alter the maximum insulin response. Resveratrol action did not
require insulin and was not blocked by the protein synthesis inhibitor cycloheximide.
L Y294002 and wortmannin, inhibitors of PI3K, abolished both insulin and resveratrolstimulated
glucose uptake while phosphorylation of AktlPKB, ERK1I2, JNK1I2, and p38
MAPK were not increased by resveratrol. Resveratrol did not stimulate GLUT4
transporter translocation in GLUT4cmyc overexpressing cells, in contrast to the
significant translocation observed with insulin. Furthermore, resveratrol- stimulated glucose transport was not blocked by the presence of the protein kinase C (PKC)
inhibitors BIMI and G06983. Despite that, resveratrol- induced glucose transport
required an intact actin network, similar to insulin.
In contrast to the stimulatory effect seen with resveratrol for glucose transport,
e4C]methylaminoisobutyric acid (MeAIB) transport was inhibited. Significant reduction
of MeAIB uptake was seen only with 100uM resveratrol (74.2 ± 6.55% of untreated
control, p<0.05), which appeared to be maximum. In parallel experiments, insulin (100
nM, 30 min) increased MeAIB transport by 147 ± 5.77% (p<0.00l) compared to
untreated control. In addition, resveratrol (100 JlM, 120 min) completely abolished
insulin- stimulated amino acid transport (103 ± 7.35% of untreated control,p>0.05).
Resveratrol also inhibited cell proliferation in L6 myoblasts with maximal
inhibition of eH]thymidine incorporation observed with resveratrol at 50 J.LM after 24
hours (8 ± 1.59% of untreated control, p
Resumo:
Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.