17 resultados para Superconducting transition temperature

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

K-(BETS)2FeBr4 is a quasi-2D charge transfer organic metal with interesting electronic and magnetic properties. It undergoes a transition to an antiferromagnetic (AF) state at ambient pressure at the Neel temperature (T^^) = 2.5 K, as well as to a superconducting (SC) state at 1.1 K [1]. The temperature dependence of the electrical resistivity shows a small decrease at T;v indicating the resistivity drops as a result of the onset of the ordering of Fe'*''" spins. A sharp drop in the resistivity at 1.1 K is due to its superconducting transition. The temperature dependence of the susceptibility indicates an antiferromagnetic spin structure with the easy axis parallel to the a-axis. The specific heat at zero-field shows a large peak at about 2.4 K, which corresponds to the antiferromagnetic transition temperature (Tat) and no anomaly is observed around the superconducting transition temperature (1.1 K) demonstrating that the magnetically ordered state is not destroyed by the appearance of another phase transition (the superconducting transition) in the 7r-electron layers [1], [2]. This work presents an investigation of how the low frequency electromagnetic response is affected by the antiferromagnetic and superconducting states, as well as the onset of strong correlation. The location of the easy axis of three samples was determined and polarized thermal reflectance measurements of these «-(BETS)2FeBr4 samples oriented with their vertical axis along the a- and c axes were then carried out using a *He refrigerator cryostat and a Martin-Puplett type polarizing interferometer at various temperatures (T = 0.5 K, 1.4 K. 1.9 K, 2.8 K) above and below the superconducting state and/or antiferromagnetic state. Comparison of the SC state to the normal state along the o- and c-axes indicates a rising thermal reflectance at low frequencies (below 10 cm"' ) which may be a manifestation of the superconducting energy gap. A dip-Hke feature is detected at low frequencies (below 15 cm"') in the thermal reflectance plots which probe the antiferromagnetic state along the two axes, and may be due to the opening of a gap in the excitation spectrum as a result of the antiferromagnetism. In another set of experiments, thermal reflectance measurements carried out along the a- and c-axes at higher temperatures (10 K-80 K) show that the reflectivity decreases with increasing temperature to 60 K (the coherence temperature) above which it increases again. Comparison of the thermal reflectance plots along the a- and c-axes at higher temperatures reveals an anisotropy between these two axes. The Hagen-Rubens thermal reflectance plots corresponding to an average over the ac-plane were calculated using experimental hterature resistivity values. Comparison of the Hagen-Rubens plots with the experimental thermal reflectance along the a- and c-axes indicates that both exhibit the general trend of a decrease in thermal reflectance with increasing frequency, however the calculated Hagen-Rubens thermal reflectance at different temperatures is much lower than the experimental curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrysttdline samples of NaiCoOa were prepared using the "Rapid heat-up" method. One set of samples was annealed in flowing O2, while the other set in flowing Argon. X-Ray diffraction measurements indicated a stable phase of Nao.7Co02 mixed with C03O4 for all the samples even though they differed in concentration of Na. Argon annealed samples were insulators, whereas the ones annealed in O2 were metallic. Most of the measurements were performed on the sample Nao.7Co02, because it is the host compound for the superconductor sample Nao.35Co02-H20. Magnetization measurement showed that the magnetic moment decreased with increasing sodium concentration. This is due to the existence of C03O4 in samples with Na^ 0.7. As sodium concentration decreases, the magnetic moment increases due to the increasing concentration of C03O4 and its large magnetic moment. Magnetization measurements showed that the magnetic moment of Nao.7Co02 is field-dependent in low fields eind field-independent in fields higher than 100 G. Resistivity changes with temperature (dp/dT) increased with increasing Na concentration. Also resistivity measurements were performed under different hydrostatic pressures on Nao.7Co02. Two transitions were observed; one at a temperature Ti ~20 K and the other at T2 ^280 K, the transition at Ti has a magnetic origin and the one at T2 is a structiural transition. It was noticed that pressure aJfects resistivity of the sample. At higher pressures resistivity changes faster with temperature. Magnetoresistance measurement showed a small change in the resistivity, especially at lower temperatures. A novel layered superconductor Nao.35Co02H20 was prepared using de-intercalation of Na from the host compound Nao.7Co02. FVom the temperature dependence of the magnetization, the superconducting transition temperature and lower critictil field have been estimated as Tc=4.12 K and Hci=66 G, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeColnssingle crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a 3He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeColns in the superconducting state in range (0, 100)cm-1 was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity 0-(w) ofCeColns indicates a possible opening of an energy gap close to 50 em-I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The macroscopic properties of the superconducting phase in the multiphase compound YPd5B3 C.3 have been investigated. The onset of superconductivity was observed at 22.6 K, zero resistance at 21.2 K, the lower critical field Hel at 5 K was determined to be Hel (5) rv 310 Gauss and the compound was found to be an extreme type-II superconductor with the upper critical field in excess of 55000 Gauss at 15 K. From the upper and lower critical field values obtained, several important parameters of the superconducting state were determined at T = 15 K. The Ginzburg-Landau paramater was determined to be ~ > 9 corresponding to a coherence length ~ rv 80A and magnetic penetration depth of 800A. In addition measurements of the superconducting transition temperature Te(P) under purely hydrostatically applied pressure have been carried out. Te(P) of YPd5B3 C.3 decreases linearly with dTe/dP rv -8.814 X 10-5 J

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bi2Sr2CaCu20g single crystal with a superconducting transition temperature equal to 90 ± 2 K was prepared. The irreversibility line of the single crystal for a mgnetic field direction along the c-axis and T* in the ab-plane was determined. The reduced temperature (l - T ) is proportional to H 1.1 for fields below 004 T and proportional to HO.09 for fields above 0.4 T. The zero temperature upper critical field Hc2(0) and coherence length ~ (0) were determined from the magnetization meaurements to be H-lC2=35.9T , H//C2=31.2T, ~c(0)=35.0 A, and ~ab(0)=32.5A,and from the magnetoresistance measurements to be H-lc2 = 134.6T , H//C2=55.5T '~c(0)=38.1 A, and ~ab(0)=2404 A for both directions of the applied magnetic field. The results obtained for Hc2(0) and ~(O) are not reliable due to the rounding that the single crystal exhibits in the magnetization and magnetoresistance curves. The magnetization relaxation of the single crystal was investigated, and was found to be logarithmic in time, and the relaxation rate increases with temperature up to 50 -60 K, then decreases at higher temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The superconducting transition temperature Tc of metallic glasses ZrxFelOO-x (x=80, 75), Zr75(NixFelOO-x)25 (x=75, 50, 25), and CU2SZr75 were measured under quasi-hydrostatic pressure up to 8 OPa (80kbar). The volume (pressure) dependence of the electron-phonon coupling parameters Aep for CU25Zr75 was calculated using the McMillan equatio11. Using this volume dependence of Aep and the modified McMillan equation which incorporates spin-fluctuations, the volume dependence of the spin fluctuation parameter, Asf, was determined in Zr75Ni25, ZrxFelOO-x , a11d Zr75(NixFelOO-x)25. It was found that with increasing pressure, spinfluctuations are suppressed at a faster rate in ZrxFe lOO-x and Zr75(NixFelOO-x)25, as Fe concentration is increased. The rate of suppression of spin-fluctuations with pressure was also found to be higher in Fe-Zr glasses than in Ni-Zr glasses of similar composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeCoIns single crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a ^He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeCoIns in the superconducting state in range (0, 100)cm~^ was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity a{u)) of CeCoIns indicates a possible opening of an energy gap close to 50 cm~^.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pressure variations of the superconducting transition temperature Ic of a series of amorphous NixZr 1 OO-x alloys have been studied under quasmydrostatic pressures upto 8 G Pa. For amorphous samples having Ni-concentration less than 40%, i)Tc/dP is positive in sign and it decreases non linearly with increase in I. whereasdTcldP is negative in sign for Ni concentration of 45%. Comparison with the Hall coefficient (I) and the thermoelectric power (2) results for the same amorphous alloys leads to the conclusion that s-d hybridization nature of the d-band (Nil plays a central role in the sign reversal behaviour. Application of pressures greater than 2 G Pa to Ni20ZrgO led to the formation of a new phase, w-Zr. which retains its form after the pressure is released.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reflectance measurements along the c-axis of La1.875 Bao.125CU04 at temperatures above(6K) and below(O.5K) the bulk superconducting transition temperature(3K) were performed using a Bruker rapid scan spectrometer and a Martin-Puplett polarizing spectrometer. It was found that when polarized light reflected from a sample the Bruker rapid scan spectrometer has a low frequency cutoff of lOcm-1 while the Martin-Puplett polarizing spectrometer has a low frequency cutoff of 6cm-1 A superconducting pla ma edge was absent in all measurements taken. It was concluded that if a superconducting plasma edge exists in La1.875Bao.125CU04 it is below 6cm-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prepared samples of MgB2 and ran sets of experiments aimed for investigation of superconducting properties under pressure. We found the value of pressure derivative of the transition temperature -1.2 ± 0.05 K/GPa. Then, using McMillan formula, we found that the main contribution to the change of the transition temperature under the pressure is due to the change in phonon frequencies. Griineisen parameter was calculated to be 7g = 2.4. Our results suggest that MgB2 is a conventional superconductor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using the Physical Vapor Transport method, single crystals of Cd2Re207 have been grown, and crystals of dimensions up to 8x6x2 mm have been achieved. X-ray diffraction from a single crystal of Cd2Re207 has showed the crystal growth in the (111) plane. Powder X-ray diffraction measurements were performed on ^^O and ^^O samples, however no difference was observed. Assigning the space group Fd3m to Cd2Re207 at room temperature and using structure factor analysis, the powder X-ray diffraction pattern of the sample was explained through systematic reflection absences. The temperatiure dependence of the resistivity measurement of ^^O has revealed two structural phase transitions at 120 and 200 K, and the superconducting transition at 1.0 K. Using Factor Group Analysis on three different structiures of Cd2Re207, the number of IR and Raman active phonon modes close to the Brillouin zone centre have been determined and the results have been compared to the temperature-dependence of the Raman shifts of ^^O and ^*0 samples. After scaling (via removing Bose-Einstein and Rayleigh scattering factors from the scattered light) all spectra, each spectrum was fitted with a number of Lorentzian peaks. The temperature-dependence of the FWHM and Raman shift of mode Eg, shows the effects of the two structurjil phase transitions above Tc. The absolute reflectance of Cd2Re207 - '^O single crystals in the far-infrared spectral region (7-700 cm~^) has been measured in the superconducting state (0.5 K), right above the superconducting state (1.5 K), and in the normal state (4.2 K). Thermal reflectance of the sample at 0.5 K and 1.5 K indicates a strong absorption feature close to 10 cm~^ in the superconducting state with a reference temperature of 4.2 K. By means of Kramers-Kronig analysis, the absolute reflectance was used to calculate the optical conductivity and dielectric function. The real part of optical conductivity shows five distinct active phonon modes at 44, 200, 300, 375, and 575 cm~' at all temperatures including a Drude-like behavior at low frequencies. The imaginary part of the calculated dielectric function indicates a mode softening of the mode 44 cm~' below Tc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The enigmatic heavy fermion URu2Si2, which is the subject of this thesis, has attracted intensive theoretical and experimental research since 1984 when it was firstly reported by Schlabitz et al. at a conference [1]. The previous bulk property measurements clearly showed that one second order phase transition occurs at the Hidden Order temperature THO ≈ 17.5 K and another second order phase transition, the superconducting transition, occurs at Tc ≈ 1 K. Though twenty eight years have passed, the mechanisms behind these two phase transitions are still not clear to researchers. Perfect crystals do not exist. Different kinds of crystal defects can have considerable effects on the crystalline properties. Some of these defects can be eliminated, and hence the crystalline quality improved, by annealing. Previous publications showed that some bulk properties of URu2Si2 exhibited significant differences between as-grown samples and annealed samples. The present study shows that the annealing of URu2Si2 has some considerable effects on the resistivity and the DC magnetization. The effects of annealing on the resistivity are characterized by examining how the Residual Resistivity Ratio (RRR), the fitting parameters to an expression for the temperature dependence of the resistivity, the temperatures of the local maximum and local minimum of the resistivity at the Hidden Order phase transition and the Hidden Order Transition Width ∆THO change after annealing. The plots of one key fitting parameter, the onset temperature of the Hidden Order transition and ∆THO vs RRR are compared with those of Matsuda et al. [2]. Different media used to mount samples have some impact on how effectively the samples are cooled because the media have different thermal conductivity. The DC magnetization around the superconducting transition is presented for one unannealed sample under fields of 25 Oe and 50 Oe and one annealed sample under fields of 0 Oe and 25 Oe. The DC field dependent magnetization of the annealed Sample1-1 shows a typical field dependence of a Type-II superconductor. The lower critical field Hc1 is relatively high, which may be due to flux pinning by the crystal defects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature dependent resistivity, p, magnetic susceptibility, X, and far-infrared reflectance measurements were made on the low Tc superconductor UBe13. Two variants of UBe13 have been proposed, named 'L'- (for low Tc ) and 'H'-type (for high Tc ). Low temperature resistivity measurements confirmed that our sample was of H-type and that the transition temperature was at 0.9 K. This was further confirmed with the observation of this transition in the AC-susceptibility. Low temperature reflectance measurements showed a decrease in the reflectivity as the temperature is lowered from 300 to 10 K, which is in qualitative agreement with the increasing resistivity in this temperature range as temperature is lowered. No dramatic change in the reflectivity was observed between 10 and 0.75 K. A further decrease of the reflectance was observed for the temperature of 0.5 K. The calculated optical conductivity shows a broad minimum near 80 cm-1 below 45 K. Above 45 K the conductivity is relatively featureless. As the temperature is lowered, the optical conductivity decreases. The frequency dependent scattering rate was found to be flat for temperatures between 300 and 45 K. The development of a peak, at around 70 cm-1 was found for temperatures of 45 K and below. This peak has been associated with the energy at which the transition to a coherent state occurs from single impurity scattering in other heavy fermion systems. The frequency dependent mass enhancement coefficient was found to increase at low frequencies as the frequency decreases. Its' magnitude as frequency approaches zero also increased as the temperature decreased.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SrMg^Rui-iOa thin films were made by using pulsed laser deposition on SrTiOa (100) substrates in either O2 or Ar atmosphere. The thin films were characterized by x-ray diffraction, energy dispersive x-ray microanalysis, dc resistivity measurement, and dc magnetization measurement. The effect of Mg doping was observed. As soon as the amount of Mg increased in SrMg-cRui-iOa thin films, the magnetization decreased, and the resistivity increased. It had little effect on the Curie temperature (transition temperature). The magnetization states of SrMgiRui-iOa thin films, for x < 0.15, are similar to SrRuOs films. X-ray diffraction results for SrMga-Rui-iOa thin films made in oxygen showed that the films are epitaxial. The thin films could not be well made in Ar atmosphere during laser ablation as there was no clear peak of SrMg^Rui-iOa in x-ray diffraction results. Substrate temperatures had an effect on the resistivity of the films. The residual resistivity ratios were increased by increasing substrate temperature. It was observed that the thickness of thin films are another factor for film quality: Thin films were epitaxial, but thicker films were not epitaxial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lead chromium oxide is a photoconductive dielectric material tha t has great potential of being used as a room temperature photodetector. In this research, we made ceramic pellets of this compound as well as potassium doped compound Pb2-xKxCr05, where x=O, 0.05, 0.125. We also investigate the properties of the lanthanum doped sample whose chemical formula is Pb1.85Lao.15Cr05' The electronic, magnetic and thermal properties of these materials have been studied. Magnetization measurements of the Pb2Cr05 sample indicate a transition at about 310 K, while for the lanthanum doped sample the transition temperature is at about 295 K indicating a paramagnetic behavior. However, the potassium doped samples are showing the transition from paramagnetic state to diamagnetic state at different temperatures for different amounts of potassium atoms present in the sample. We have studied resistivity as a function of temperature in different gas environments from 300 K to 900 K. The resistivity measurement of the parent sample indicates a conducting to insulating transition at about 300 K and upon increasing the temperature further, above 450 K the sample becomes an ionic conductor. As temperature increases a decrease in resistance is observed in the lanthanum/potassium doped samples. Using Differential Scanning Calorimetry experiment an endothermic peak is observed for the Pb2Cr05 and lanthanum/potassium doped samples at about 285 K.