3 resultados para Subtests
em Brock University, Canada
Resumo:
Fluid inteliigence has been defined as an innate ability to reason which is measured commonly by the Raven's Progressive Matrices (RPM). Individual differences in fluid intelligence are currently explained by the Cascade model (Fry & Hale, 1996) and the Controlled Attention hypothesis (Engle, Kane, & Tuholski, 1999; Kane & Engle, 2002). The first theory is based on a complex relation among age, speed, and working memory which is described as a Cascade. The alternative to this theory, the Controlled Attention hypothesis, is based on the proposition that it is the executive attention component of working memory that explains performance on fluid intelligence tests. The first goal of this study was to examine whether the Cascade model is consistent within the visuo-spatial and verbal-numerical modalities. The second goal was to examine whether the executive attention component ofworking memory accounts for the relation between working memory and fluid intelligence. Two hundred and six undergraduate students between the ages of 18 and 28 completed a battery of cognitive tests selected to measure processing speed, working memory, and controlled attention which were selected from two cognitive modalities, verbalnumerical and visuo-spatial. These were used to predict performance on two standard measures of fluid intelligence: the Raven's Progressive Matrices (RPM) and the Shipley Institute of Living Scales (SILS) subtests. Multiple regression and Structural Equation Modeling (SEM) were used to test the Cascade model and to determine the independent and joint effects of controlled attention and working memory on general fluid intelligence. Among the processing speed measures only spatial scan was related to the RPM. No other significant relations were observed between processing speed and fluid intelligence. As 1 a construct, working memory was related to the fluid intelligence tests. Consistent with the predictions for the RPM there was support for the Cascade model within the visuo-spatial modality but not within the verbal-numerical modality. There was no support for the Cascade model with respect to the SILS tests. SEM revealed that there was a direct path between controlled attention and RPM and between working memory and RPM. However, a significant path between set switching and RPM explained the relation between controlled attention and RPM. The prediction that controlled attention mediated the relation between working memory and RPM was therefore not supported. The findings support the view that the Cascade model may not adequately explain individual differences in fluid intelligence and this may be due to the differential relations observed between working memory and fluid intelligence across different modalities. The findings also show that working memory is not a domain-general construct and as a result its relation with fluid intelligence may be dependent on the nature of the working memory modality.
Resumo:
The strength and nature of the video game practice effect on tests of visual and perceptual skills were examined using high functioning Grades Four and Five students who had been tested with the WISC-R .for the purpose of gifted identification and placement. The control group, who did not own and .play video games on a sustained basis, and the experimental group, who did own a video game system and had some mastery of video games, including the -Nintendo game, "Tetris", were each composed of 18 juniorg:r;-ade students and were chosen from pre-existing conditions. The experimental group corresponded to the control group in terms of age, sex, and community. Data on the Verbal and Performance I.Q. Scores were· collected for both groups and the author was interested in the difference between the Verbal and Performance Scores within each group, anticipating a P > V outcome for the experimental group. The results showed a significant P > V difference in the experimental, video game playing group, as expected, but no significant difference between the Performance $cores of the control and experimental groups. The results, thus, indicated lower Verbal I.Q. Scores in the experimental group relat'ive to 'the control group.' The study conclu~ed that information about a sUbject's video game experience and "learhing style pref~rence is important for a clear interpretation of the Verbal and Performance I.Q. Scores of the WISC-R. Although the time spent on video game play may, 'indeed, increase P~rformance Scores relative to Verbal Scores for an individual, the possibilities exist that the time borrowed and spent away from language based activities may retard verbal growth and/or that the cognitive style associated with some Performance I.Q.subtests may have a negative effect on the approach to the tasks on the Verbal I.Q. Scale. The study also discussed the possibility that exposure to ,the video game experience, in pre-puberty, can provide spatial instruction which will result in improved spatial skills. strong spatial skills have been linked to improved performance and preference in mathematics, science, and engineering and it was suggested that appropriate video game play might be a way to involve girls more in the fields of mathematics and science.
Resumo:
We examined the cognitive and emotional sequelae following mild head injury (MHI; e.g., concussion) in high-functioning individuals and whether persons with MHI pre~ent, both physiologically and via self-report, in a manner different from (i.e., underaroused) that of persons who have no history of head injury. We also investigated the effect arousal state ~as on the cognitive performance of this population. Using a quasiexperimental research design (N = 91), we examined changes in attention, working memory, and cognitive flexibility (subtests ofthe WAIS-III, 1997,WMS-III, 1997, & DKEFS, 2002) as a function of manipulated arousal (i.e., induced psychosocial stress/activation; reduced activation/relaxation). In addition to self-reported arousal and state anxiety (State-Trait Anxiety Inventory; Speilberger, 1983a) measures, physiological indices of arousal state (i.e., electrodermal responsivity, heart rate, and respiration activity) were recorded (via Polygraph Professional Suite, 2008) across a 2.5 hour interval while completing various cognitive tasks. Students also completed the Post-concussive Symptom Checklist (Gouvier et aI., 1992). The results demonstrate that university students who report a history ofMHI (i.e., "altered state of consciousness") experience significantly lower levels of anxiety, were physiologically underaroused, and were less responsive to stressors in their environment, compared to their non-~HI cohorts. As expected, cognitive flexibility (but not other neuropsychological measures of cognition) was advantaged with increased stress, and disadvantaged with reduced stress, in persons with reported MHI, but not for those without reported MHI which provided limited support for our hypothesis. Further, university students who had no complaints related to their previous MHI endorsed a greater number of traditional post-concussive symptoms in terms of intensity, duration and frequency as compared to students who did not report a MHI. The underarousal in traumatic brain injury has been associated with (ventromedial prefrontal cortex) VMPFC disruption and may be implicated in MHI generally. Students who report sustaining a previous MHI may be less able to physiologically respond and/or cognitively appraise, stressful experiences as compared to their no-MHI cohort and experience persistent, long-lasting consequences despite the subtle nature of a history of head injury.