6 resultados para Submarine valleys.

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two tills are readily identi-f i able in central Southern Ontario, a very stony, loose deposit o-f variable matrix (Dummer till) and a moderately stony, fissile and compact deposit that is more homogeneous (drumlinized till). The quantity o-f Precambr i an, Paleozoic and Shadow Lake Formation (Paleozoic) rock types were determined and corresponding isopleth maps drawn. The changes in lithology content occurred in the direction o-f transport, there-fore, compositional isopleths o-f till may be considered equipotential lines for the reconstruction of glacier flow paths. Areal gradations of drift lithology indicated that the prime agents of dispersal were ice and glacial meltwaters. The down-ice abundance trend of till components indicated a dispersal pattern showing the concentration of a given lithology type peaking within a few kilometres of the source followed by a rapid decline and thereafter, a more gradual decrease with increasing distance. Within the esker deposits, igneous rocks may form the major component and can extend further onto the limestone plain than in the adjacent till. Evidence is presented that indicates the "style" of dispersal was one in which glacial ice may have been strongly influenced by local bedrock topography and the regional structural trends. The ice tended to follow pre-existing valleys and lows, depositing till composed mainly of local bedrock. Gradations in Paleozoic clast content showed that the local bedrock lithology became the primary till component within 3 km of down-ice transport. Evidence is presented that indicated the last glaciation may have occurred as a relatively thin ice mass, followed by stagnation and recession. No evidence of a lateglacial re-advance was found within the study area. Because of the lack of a contact between the Dummer and drumlinized till, and because of results showing gradation of the Dummer till into the drumlinized till (as indicated by lithology content and grain size), it is suggested that no re-advance occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

330 km 2 of the easter-n part of the Archean Manitou Lakes - Stormy Lake metavolcanic - metasedimentary belt have been mapped and sampled. A large number of rocks ~.vere analyzed for the major and trace constituents including the rare-earth elements (REE). The Stormy Lake - Kawashegamuk Lake area may be subdivided into four major lithological groups of supracrustal rocks 1) A north-facing mafic assemblage, consisting of pillowed tholeiitic basalts and gabbro sills characterized by flat REE profiles, is exposed in the south part of the map area and belongs to a 8000 m thick homoclinal assemblage outside the map area. Felsic pyroclastic rocks believed to have been issued from a large central vent conformably overlie the tholeiites. 2) A dominantly epiclastic group facing to the north consists of terrestrial deposits interpreted to be an alluvial fan deposit ; a submarine facies is represented by turbiditic sediments. 3) The northeastern part of the study area consists of volcanic rocks belonging to two mafic - felsic cycles facing to the southuest ; andesitic flows with fractionated REE patterns make up a large part of the upper cycle, whereas the lower cycle has a stronger chemical polarity being represented by tholeiitic flows, with flat REE, which a r e succeeded by dacitic and rhyolitic pyroclasti cs. iii 4) A thick monotonous succession of tholeiitic pillmled basalt f lows and gabbro sills with flat REE represent the youngest supracrustal rocks. TIle entire belt underwent folding, faulting and granitic plutonism during a tectono-thermal event around 2700 Ma ago. Rocks exposed in the map area were subjected to regional greenschist facies metamorphism, but higher metamorphic grades are present near late granitic intrusions. Geochemical studies have been useful in 1) distinguishing the various rock units ; 2) relating volcanic and intrusive rocks 3) studying the significance of chemical changes due to post magmatic processes 4) determining the petrogenesis of the major volcanic rock types. In doing so, two major volcanic suites have been recognized : a) a tholeiitic suite, mostly represented by mafic rocks, was derived from partial melting of upper mantle material depleted in Ti, K and the light REE ; b) a calc-alkalic suite which evolved from partial melting of amphibolite in the lower crust. The more differentiated magma types have been produced by a multistage process involving partial melting and fractional crystallization to yield a continuum of compos i t i ons ranging from basaltic andesite to rhyolite. A model for the development of the eastern part of the Manitou Lakes - Stormy Lake belt has been proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lower Silurian Whirlpool Sandstone is composed of two main units: a fluvial unit and an estuarine to transitional marine unit. The lowermost unit is made up of sandy braided fluvial deposits, in shallow valleys, that flowed towards the northwest. The fluvial channels are largely filled by cross-bedded, well sorted, quartzose sands, with little ripple crosslaminated or overbank shales. Erosionally overlying this lower unit are brackish water to marine deposits. In the east, this unit consists of estuarine channels and tidal flat deposits. The channels consist of fluvial sands at the base, changing upwards into brackish and tidally influenced channelized sandstones and shales. The estuarine channels flowed to the southwest. Westwards, the unit contains backbarrier facies with extensive washover deposits. Separating the backbarrier facies from shoreface sandstone facies to the west, are barrier island sands represented by barrier-foreshore facies. The barrier islands are dissected by tidal inlets characterized by fining upward abandonment sequences. Inlet deposits are also present west of the barrier island, abandoned by transgression on the shoreface. The sandy marine deposits are replaced to the west by carbonates of the Manitoulin Limestone. During the latest Ordovician, a hiatus in crustal loading during the Taconic Orogeny led to erosional offloading and crustal rebound, the eroded material distributed towards the west, northwest and north as the terrestrial deposits of the fluvial Whirlpool. The "anti-peripheral bulge" of the rebound interfered with the peripheral bulge of the Michigan Basin, nulling the Algonquin Arch, and allowing the detritus of the fluvial Whirlpool to spread onto the Algonquin Arch. The Taconic Orogeny resumed in the earliest Silurian with crustal loading to the south and southeast, and causing tilting of the surface slope in subsurface Lake Erie towards the ii southwest. Lowstand terrestrial deposits were scoured into the new slope. The new crustal loading also reactivated the peripheral bulge of the Appalachian Basin, allowing it to interact with the bulge of the Michigan Basin, raising the Algonquin Arch. The crustal loading depressed the Appalachian basin and allowed transgression to occur. The renewed Algonquin Arch allowed the early Silurian transgression to proceed up two slopes, one to the east and one to the west. The transgression to the east entered the lowstand valleys and created the estuarine Whirlpool. The rising arch caused progradation of the Manitoulin carbonates upon shoreface facies of the Whirlpool Sandstone and upon offshore facies of the Cabot Head Formation. Further crustal loading caused basin subsidence and rapid transgression, abandoning the Whirlpool estuary in an offshore setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Joseph William Winthrop Spencer (commonly known as J.W. Spencer) was a geologist and geomorphologist best known for his work on the geology of southern Ontario and the Great Lakes. He was born in Dundas, Upper Canada in 1851, but moved to Hamilton, Ontario in 1867. In 1871, he began studies in geology at McGill College in Montreal. In 1875 he worked in the Michigan copper mines and shortly afterwards prepared a thesis on the copper deposits. He submitted this thesis to the University of Gottingen in Germany in 1877 and was awarded a doctorate in geology, the second Canadian to earn a doctorate in this field. In 1880, he became a professor of geology and chemistry at King’s College in Windsor, N.S. Subsequently, he taught at the University of Missouri, and then the University of Georgia, but moved to Washington, D.C. in 1894, where he worked as a consultant geologist. Spencer spent much of his life studying preglacial river valleys in Ontario and the origins of the Great Lakes, as well as the Niagara River and Falls. In 1907, he published a book titled The Falls of Niagara: their evolution and varying relations to the Great Lakes. His opinions in these areas differed from some of his contemporaries, namely the American geologist Grove Karl Gilbert. Gilbert published a review of the The Falls of Niagara that exposed some flaws and inaccuracies in Spencer’s estimate of the age of the falls. Spencer’s studies also took him to the Caribbean and Central America. In 1920 he moved back to Canada, but died the following year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resurgence of malaria in highland regions of Africa, Oceania and recently in South America underlines the importance of the study of the ecology of highland mosquito vectors of malaria. Since the incidence of malaria is limited by the distribution of its vectors, the purpose of this PhD thesis was to examine aspects of the ecology of Anopheles mosquitoes in the Andes of Ecuador, South America. A historical literature and archival data review (Chapter 2) indicated that Anopheles pseudopunctipennis transmitted malaria in highland valleys of Ecuador prior to 1950, although it was eliminated through habitat removal and the use of chemical insecticides. Other anopheline species were previously limited to low-altitude regions, except in a few unconfirmed cases. A thorough larval collection effort (n=438 attempted collection sites) in all road-accessible parts of Ecuador except for the lowland Amazon basin was undertaken between 2008 - 2010 (Chapter 3). Larvae were identified morphologically and using molecular techniques (mitochondrial COl gene), and distribution maps indicated that all five species collected (Anopheles albimanus, An. pseudopunctipennis, Anopheles punctimacula, Anopheles oswaldoi s.l. and Anopheles eiseni) were more widespread throughout highland regions than previously recorded during the 1940s, with higher maximum altitudes for all except An. pseudopunctipennis (1541 m, 1930 m, 1906 m, 1233 m and 1873 m, respectively). During larval collections, to characterize species-specific larval habitat, a variety of abiotic and biotic habitat parameters were measured and compared between species-present and species-absent sites using chi-square tests and stepwise binary logistic regression analyses (Chapter 4). An. albimanus was significantly associated with permanent pools with sand substrates and An. pseudopunctipennis with gravel and boulder substrates. Both species were significantly associated with floating cyanobacterial mats and warmer temperatures, which may limit their presence in cooler highland regions. Anopheles punctimacula was collected more often than expected from algae-free, shaded pools with higher-than-average calculated dissolved oxygen. Anopheles oswaldoi s.l., the species occurring on the Amazonian side of the Andes, was associated with permanent, anthropogenic habitats such as roadside ditches and ponds. To address the hypothesis that human land use change is responsible for the emergence of multiple highland Anopheles species by creating larval habitat, common land uses in the western Andes were surveyed for standing water and potential larval habitat suitability (Chapter 5). Rivers and road edges provided large amounts of potentially suitable anopheline habitat in the western Andes, while cattle pasture also created potentially suitable habitat in irrigation canals and watering ponds. Other common land uses surveyed (banana farms, sugarcane plantations, mixed tree plantations, and empty lots) were usually established on steep slopes and had very little standing water present. Using distribution and larval habitat data, a GIS-based larval habitat distribution model for the common western species was constructed in ArcGIS v.l 0 (ESRI 2010) using derived data layers from field measurements and other sources (Chapter 6). The additive model predicted 76.4 - 97.9% of the field-observed collection localities of An. albimanus, An. pseudopunctipennis and An. punctimacula, although it could not accurately distinguish between species-absent and speciespresent sites due to its coarse scale. The model predicted distributional expansion and/or shift of one or more anopheline species into the following highland valleys with climate warming: Mira/Chota, Imbabura province, Tumbaco, Pichincha province, Pallatanga and Sibambe, Chimborazo province, and Yungilla, Azuay province. These valleys may serve as targeted sites of future monitoring to prevent highland epidemics of malaria. The human perceptions of malaria and mosquitoes in relation to land management practices were assessed through an interview-based survey (n=262) in both highlands and lowlands, of male and female land owners and managers of five property types (Chapter 7). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. In conclusion, this interdisciplinary thesis examines the occurrence of Anopheles species in the lowland transition area and highlands in Ecuador, from a historic, geographic, ecological and sociological perspective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interior layered deposit (ILD) in Ganges Chasma, Valles Marineris, is a 4.25 km high mound that extends approximately 110 km from west to east. The deposition, deformation, and erosion history of the Ganges ILD records aids in identifying the processes that formed and shaped the Chasma. To interpret structural and geomorphic processes acting on the ILD, multiple layer attitudes and layer thickness transects were conducted on the Ganges ILD. Mineralogical data was analyzed to determine correlations between materials and landforms. Layer thickness measurements indicate that the majority of layers are between 0.5 m and 4 m throughout the ILD. Three major benches dominate the Ganges ILD. Layer thicknesses increase at the ILD benches, suggesting that the benches are formed from the gradual thickening of layers. This indicates that the benches are depositional features draping over basement topography. Layer attitudes indicate overall shallow dips generally confined to a North-South direction that locally appear to follow bench topography. Layering is disrupted on a scale of 40 m to 150 m in 12 separate locations throughout the ILD. In all locations, underlying layering is disturbed by overlying folded layers in a trough-like geometry. These features are interpreted to have formed as submarine channels in a lacustrine setting, subsequently infilled by sediments. Subsequently, the channels were eroded to the present topography, resulting in the thin, curved layering observed. Data cannot conclusively support one ILD formation hypothesis, but does indicate that the Ganges ILD postdates Chasma formation. The presence of water altered minerals, consistently thin layering, and layer orientations provide strong evidence that the ILD formed in a lacustrine setting.