7 resultados para Subcellular trafficking

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membranes are dynamic structures that affect cell structure and function. Compositional changes ofmembranes have been shown with the application of a perturbation; however these are limited to whole tissue analysis. The purpose of this thesis was to compare the phospholipid (PL) fatty acid (FA) composition of rat whole muscle (Wm) to 1) purified and non-purified subsarcolemmal (SS) mitochondria in soleus, plantaris, and red gastrocnemius, and 2) sarcolemma, transverse-tubules, SS and intermyofibrillar (IMF) mitochondria fix)m whole hindlimb. The major findings were that 1) contamination significantly altered the PL FA composition of the SS mitochondrial membrane fraction, 2) Wm and SS mitochondria compositions differed between muscle types, and 3) Wm did not accurately reflect the PL FA composition of any isolated subcellular membranes, with each being unique from each other. As such, the relevancy of the trends reported in the literature of the effects of perturbations on Wm may be limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichoderma aggressivum f. aggressivum is a filamentous soil fungus. Green mold disease of commercial mushrooms caused by this species in North America has resulted in millions of dollars in lost revenue within the mushroom growing industry. Research on the molecular level of T aggressivum have jus t begun with the goal of understanding the functions of each gene and protein, and their expression control. Protein targeting has not been well studied in this species yet. Therefore, the intent of this study was to test the protein localization and production levels in T aggressivum with green fluorescent protein (GFP) with an intron and tagged with either nuclear localization signal (NLS) or an endoplasmic reticulum retention signal (KDEL). Two GFP constructs (with and without the intron) were used as controls in this study. All four constructs were successfully transferred into T aggressivum and all modified strains showed similar growth characteristics as the wild type non-transformed isolate. GFP expression was detected from all modified T aggressivum with confocal microscopy and the expression was similar in all four strains. The intron tested in this study had no or very minor effects as GFP expression was similar with or without it. The GFP signal increased over a 5 day period for all transformants, while the GFP to total protein ratio decreased over the same period for all transformants. The GFP-KDEL transformant showed similar protein expression level and localization as did the control transformant lacking the KDEL retention signal. The GFP-NLS transformant similarly failed to localize GFP into nucleus as fluorescence with this strain was virtually identical to the GFP transformant lacking the NLS. Thus, future research is required to find effective localization signals for T aggressivum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since its discovery in 1922, vitamin E has been widely investigated for its role as a powerful, chain-breaking antioxidant that is required for human health. However, some basic issues still remain unclear, such as the mechanism and dynamics of the intracellular trafficking of a-tocopherol. To better understand tocopherol's biological activity at the cellular level, fluorescence spectroscopy and microscopy have been found to be valuable tools. This thesis reports the synthesis of a new fluorescent analogue of a-tocopherol, atocohexaenol, an intrinsically fluorescent analogue of a-tocopherol. Different methodologies of preparation have been attempted and a strategy using a preformed chromanol head plus ClO and Cs portion of the polyene side chain finally provided us the desired a-tocohexaenol. a-Tocohexaenol shows a strong fluorescence in both ethanol and hexanes with maximum Aab = 368 nm and maximum /...em = 521 nm. This compound is stable for a couple of weeks in ethanol or hexane solution if stored at 0 °C and protected form light. It decomposes slowly at room temperature and light will accelerate its decomposition (within 5 hours). Thus, a-Tocohexaenol may be a useful fluorescent probe to study the biochemistry and cell biology of vitamin E.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The a-tocopherol transfer protein (a-TTP) is responsible for the retention of the atocopherol form of vitamin E in living organisms. The detailed ligand transfer mechanism by a-TTP is still yet to be fully elucidated. To date, studies show that a-TTP transfers a-tocopherol from late endosomes in liver cells to the plasma membrane where it is repackaged into very low density lipoprotein (VLDL) and released into the circulation. Late endosomes have been shown to contain a lipid known as lysobisphosphatidic acid (LBP A) that is unique to this cellular compartment. LBPA plays a role in intracellular trafficking and controlling membrane curvature. Taking these observations into account plus the fact that certain proteins are recruited to membranes based on membrane curvature, the specific aim of this project was to examine the effect of LBP A on a-TTP binding to lipid membranes. To achieve this objective, dual polarization interferometry (DPI) and a vesicle binding assay were employed. Whilst DPI allows protein binding affinity to be measured on a flat lipid surface, the vesicle binding assay determines protein binding affinity to lipid vesicles mimicking curved membranes. DPI analysis revealed that the amount of a-TTP bound to lipid membranes is higher when LBPA is present. Using the vesicle binding assay, a similar result was seen where a greater amount of protein is bound to large unilamellar vesicles (LUV s) containing LBP A. However, the effect of LBP A was attenuated when small unilamellar vesicles (SUVs) were replaced with LUVs. The outcome of this project suggests that aTTP binding to membranes is influenced by membrane curvature, which in turn is induced by the presence of LBP A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigated the subcellular location of skeletal muscle PLIN proteins (PLIN2, PLIN3, and PLIN5) as well as protein interactions with ATGL and HSL at rest and following lipolytic stimulation. In addition, the serine phosphorylation state of PLIN2, PLIN3, and PLIN5 was determined at rest and following lipolytic stimulation. An isolated whole muscle technique was used to study the effects of contraction and epinephrine-induced lipolysis. This method allowed for the examination of the effects of contraction and epinephrine alone and in combination. Further, the soleus was chosen for investigating the role of PLIN proteins in skeletal muscle lipolysis due to its suitability for isolated incubation, and the fact that it is primarily oxidative in nature (~80% type I fibres). It has also been previously shown to have the greatest reliance on lipid metabolism and for this reason is ideal for investigating the role of PLIN proteins in lipolysis. Immunofluorescence microscopy revealed that skeletal muscle lipid droplets are partially co-localized to both PLIN2 and PLIN5 and that contraction does not affect the amount of colocalization, indicating that PLIN5 is not recruited to lipid droplets with contraction (PLIN2 ~65%; PLIN5 ~56%). Results from the immunoprecipitation studies revealed that with lipolysis in skeletal muscle the interaction between ATGL and CGI-58 is increased (study 2: 128% with contraction, p<0.05; study 3: 50% with contraction, 25% epinephrine, 80% contraction + epinephrine, p>0.05). Further PLIN2, PLIN3, and PLIN5 all interact with ATGL and HSL, while only PLIN3 and PLIN5 interact with CGI-58. Among these interactions, the association between PLIN2 and ATGL decreases with lipolytic stimulation (study 2: 21% with contraction, p<0.05). Finally our results demonstrate that PLIN3 and PLIN5 are serine phosphorylated at rest and that the level of phosphorylation remains unchanged in the face of either contractile or adrenergic stimulation. In summary, the regulation of skeletal muscle lipolysis is a complex process involving multiple proteins and enzymes. The skeletal muscle PLIN proteins likely play a role in skeletal muscle lipid droplet dynamics, and the data from this thesis indicate that these proteins may work together in regulating lipolysis by interaction with both ATGL and HSL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The various steps of monoterpene indole alkaloid (MIA) biosynthesis are known to occur in specialized cell types and subcellular compartments. Numerous MIAs display powerful biological activities that have led to their use as pharmaceutical treatments for cancer, hypertension and malaria. Many of these compounds accumulate on the leaf surface of medicinally important Apocynaceae plants, which led to the recent discovery and characterization of an ABC transporter (CrTPT2) that was shown to mobilize catharanthine from its site of biosynthesis in epidermal cells to the leaf surface of Catharanthus roseus. Bioinformatic analysis of transcriptomes from several geographically distant MIA-producing species led to the identification of proteins with high amino acid sequence identity to CrTPT2. Molecular cloning of a similar transporter (VmTPT2) from Vinca minor was carried out and expressed in a yeast heterologous system for transport experiments and functional characterization. In planta studies involved transcript expression analysis of the early MIA biosynthetic gene VmTDC and putative transporter VmTPT2, and alkaloid profile analyses. RT-qPCR results showed that VmTPT2 expression increased 15-fold between the first two leaf pairs, and high levels were maintained across older leaves. The alkaloid accumulation profile on leaf surfaces matched that of VmTPT2 expression, especially for the MIAs vincadifformine and vincamine. Gene expression and alkaloid profile analyses suggest that the functional protein may act as a similar transporter to CrTPT2. However, although VmTPT2 had 88.4% identity at the amino acid level to CrTPT2, it displayed an altered expression pattern in planta across developing leaves, and functional characterization using a previously developed yeast heterologous system was unsuccessful due to difficulties with reproducibility of transport assays.