30 resultados para Spring Valley Water Company (Calif.)

em Brock University, Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photograph of water rushing through hydro tunnel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three men looking down tunnel as water is pouring in.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Certificate for 1 share of capital stock in Nicola Valley Coal and Coke Company to Welland D. Woodruff, May 13, 1905.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Certificate for 21 shares of capital stock in Nicola Valley Coal and Coke Company to Welland D. Woodruff, Oct. 16, 1905.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presently non-commercial occurrences of Mississippi Valley-type ore assemblages in the Middle Silurian strata of the Niagara Peninsula have been studied. Based on this detailed study, a new poly-stage genetic model is proposed which relates ore mineralization in carbonate environments to the evolution of the sedimentary basin. Sulphide ore mineralization occurred during two episodes: 1. During the late diagenesis stage, which is characterized by compaction-maturation of the sediments, the initial mineralization took place by upward and outward movement of connate waters. Metals were probably supplied from all the sediments regardless of their specific lithologies. However, clay minerals were possibly the main contributors. The possible source of sulphur was from petroleum-type hydrocarbons presently mixed with the sediments at the site of ore deposition. Evidence for this is the fact that the greatest abundance of ore minerals is in petroliferous carbonates. The hydrocarbons probably represent liquids remaining after upward migration to the overlying Guelph-Salina reservoirs. The majority of sphalerite and galena formed during this period, as well as accessory pyrite, marcasite, chalcopyrite, chalcocite, arsenopyrite, and pyrrhotite; and secondary dolomite, calcite, celestite, and gypsum. 2. During the presently ongoing surface erosion and weathering phase, which is marked by the downward movement of groundwater, preexisting sulphides were probably remobilized, and trace amounts of lead and zinc were leached from the host material, by groundwaters. Metal sulphides precipitated at, or below, the water table, or where atmospheric oxygen could raise the Eh of groundwaters to the point where soluble metal complexes are unstable and native sulphur co-precipitates with sphalerite and galena. This process, which can be observed today, also results in the transport and deposition of the host rock material. Breakdown of pre-existing sulphide and sulphate, as well as hydrocarbon present in the host rock, provided sulphur necessary for sulphide precipitation. The galena and sphalerite are accompanied by dolomite, calcite, gypsum, anglesite, native sulphur and possibly zincite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lithograph, "General view of lands, tunnel and docks of Niagara River Hydraulic Tunnel, Power and Sewer Company," called for p. [4] in the Index, has been removed and encapsulated, and is shelved separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This qualitative case study identifies and discusses the standards and risk management practices of the Ottawa Valley whitewater rafting industry and the impacts of the government enforced Special-purpose Vessels Regulations are discussed. Data collection occurred using a single case study design, which included interviews and document analysis. This study found that internal, industry, and actual standards are influenced through a variety of sources. These standards were found to affect the risk management practices of commercial whitewater rafting providers. In general, these standards promoted a high level of risk management within the Ottawa Valley rafting industry. The Special-purpose Vessels Regulations were found to be non-influential in raising the risk management standards of the Ottawa Valley whitewater rafting industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

. The influence of vine water status was studied in commercial vineyard blocks of Vilis vinifera L. cv. Cabernet Franc in Niagara Peninsula, Ontario from 2005 to 2007. Vine performance, fruit composition and vine size of non-irrigated grapevines were compared within ten vineyard blocks containing different soil and vine water status. Results showed that within each vineyard block water status zones could be identified on GIS-generated maps using leaf water potential and soil moisture measurements. Some yield and fruit composition variables correlated with the intensity of vine water status. Chemical and descriptive sensory analysis was performed on nine (2005) and eight (2006) pairs of experimental wines to illustrate differences between wines made from high and low water status winegrapes at each vineyard block. Twelve trained judges evaluated six aroma and flavor (red fruit, black cherry, black current, black pepper, bell pepper, and green bean), thr~e mouthfeel (astringency, bitterness and acidity) sensory attributes as well as color intensity. Each pair of high and low water status wine was compared using t-test. In 2005, low water status (L WS) wines from Buis, Harbour Estate, Henry of Pelham (HOP), and Vieni had higher color intensity; those form Chateau des Charmes (CDC) had high black cherry flavor; those at RiefEstates were high in red fruit flavor and at those from George site was high in red fruit aroma. In 2006, low water status (L WS) wines from George, Cave Spring and Morrison sites were high in color intensity. L WS wines from CDC, George and Morrison were more intense in black cherry aroma; LWS wines from Hernder site were high in red fruit aroma and flavor. No significant differences were found from one year to the next between the wines produced from the same vineyard, indicating that the attributes of these wines were maintained almost constant despite markedly different conditions in 2005 and 2006 vintages. Partial ii Least Square (PLS) analysis showed that leaf \}' was associated with red fruit aroma and flavor, berry and wine color intensity, total phenols, Brix and anthocyanins while soil moisture was explained with acidity, green bean aroma and flavor as well as bell pepper aroma and flavor. In another study chemical and descriptive sensory analysis was conducted on nine (2005) and eight (2006) medium water status (MWS) experimental wines to illustrate differences that might support the sub-appellation system in Niagara. The judges evaluated the same aroma, flavor, and mouthfeel sensory attributes as well as color intensity. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA) and discriminate analysis (DA). ANOV A of sensory data showed regional differences for all sensory attributes. In 2005, wines from CDC, HOP, and Hemder sites showed highest. r ed fruit aroma and flavor. Lakeshore and Niagara River sites (Harbour, Reif, George, and Buis) wines showed higher bell pepper and green bean aroma and flavor due to proximity to the large bodies of water and less heat unit accumulation. In 2006, all sensory attributes except black pepper aroma were different. PCA revealed that wines from HOP and CDC sites were higher in red fruit, black currant and black cherry aroma and flavor as well as black pepper flavor, while wines from Hemder, Morrison and George sites were high in green bean aroma and flavor. ANOV A of chemical data in 2005 indicated that hue, color intensity, and titratable acidity (TA) were different across the sites, while in 2006, hue, color intensity and ethanol were different across the sites. These data indicate that there is the likelihood of substantial chemical and sensory differences between clusters of sub-appellations within the Niagara Peninsula iii

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power at the Falls: The first recorded harnessing of Niagara Falls power was in 1759 by Daniel Joncairs. On the American side of the Falls he dug a small ditch and drew water to turn a wheel which powered a sawmill. In 1805 brothers Augustus and Peter Porter expanded on Joncairs idea. They bought the American Falls from New York State at public auction. Using Joncairs old site they built a gristmill and tannery which stayed in business for twenty years. The next attempt at using the Falls came in 1860 when construction of the hydraulic canal began by the Niagara Falls Hydraulic Power and Manufacturing Co. The canal was complete in 1861 and brought water from the Niagara river, above the falls, to the mills below. By 1881 the Niagara Falls Hydraulic Power and Manufacturing Co. had a small generating station which provided some electricity to the village of Niagara Falls and the Mills. This lasted only four years and then the company sold its assets at public auction due to bankruptcy. Jacob Schoellkopf arrived at the Falls in 1877 with the purchase of the hydraulic canal land and water and power rights. In 1879 Schoellkopf teamed up with Charles Brush (of Euclid Ohio) and powered Brush’s generator and carbon arc lights with the power from his water turbines, to illuminate the Falls electrically for the first time. The year 1895 marked the opening of the Adam No. 1 generating station on the American side. The station was the beginnings of modern electrical utility operations. The design and operations of the generating station came from worldwide competitions held by panels of experts. Some who were involved in the project include; George Westinghouse, J. Pierpont Morgan, Lord Kelvin and Nikoli Tesla. The plants were operated by the Niagara Falls Power Company until 1961, when the Robert Moses Plant began operation in Lewiston, NY. The Adams plants were demolished that same year and the site used as a sewage treatment plant. The Canadian side of the Falls began generating their own power on January 1, 1905. This power came from the William Birch Rankine Power Station located 500 yards above the Horseshoe Falls. This power station provided the village of Fort Erie with its first electricity in 1907, using its two 10,000 electrical horsepower generators. Today 11 generators produce 100,000 horsepower (75 megawatts) and operate as part of the Niagara Mohawk and Fortis Incorporated Power Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Welland Power and Supply Canal Company Limited, established in 1893 and incorporated in 1894 with a capital stock of $500,000. The aim of the company was to harness the natural water supply of the Niagara and Welland Rivers. In 1898 the Canadian Electrical News published a report by Henry Symons, QC outlining the main project of the company. This project involves the construction of a canal from the Welland River to the brow of the mountain at Thorold, a distance of 8 miles; the construction at Thorold of a power house, and from Thorold to Lake Ontario, a raceway by which to carry water into the lake. The estimate for the machinery to generate 100,000 horse power is £125,000; for transmission line to Toronto at a voltage of 10,000….The total estimate therefore amounts to £2,452,162, or roughly speaking, $12,000,000. Source: Canadian Electrical News, August 1898, p. 172. In 1899 the company officers petitioned the federal government desiring a name change to the Niagara-Welland Power Company Limited. Officers of the company were Harry Symons, President; Charles A. Hesson, Vice-President; and M.R. O’Loughlin, James B. Sheehan, James S. Haydon, Frederick K. Foster, directors; John S. Campbell, secretary-treasurer. The company’s head offices were located in St. Catharines, with a New York (City) office on Broad Street. In 1905 and 1909 the company petitioned the federal government for additional time to construct its works, which was granted. The company had until May 16, 1915 to complete construction. John S. Campbell (1860-1950) was a graduate of the University of Toronto and Osgoode Hall. During his university years John began his military career first in "K" Company, Queens Own rifles and then later as Commanding Officer of the 19th Lincoln Regiment, from 1906 to 1910. Upon his return to St. Catharines John Campbell served as secretary in the St. Catharines Garrison Club, a social club for military men begun in 1899. After being called to the Bar, he became a partner in the firm of Campbell and McCarron and was appointed to the bench in 1916, serving until retirement in 1934. Judge Campbell served as an alderman for several terms and was the mayor of St. Catharines in 1908 and 1909. He also served as the first chairman of the St. Catharines Public Utilities in 1914. John S. Campbell was married to Elizabeth Oille, daughter of Jerome B. and Charlotte (St. John) Oille. The family home "Cruachan" was located at 32 Church St.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On February 29, 1912 The Ontario Paper Company Limited was incorporated under the leadership of Col. Robert R. McCormick. Four months later construction began in Thorold, Ontario as this location was best for the abundance of power and water and water transportation. The first machine was started at the mill on September 5, 1913. The mill was one of the most advanced of its era, using electricity instead of water power. The mill was also the first of its kind as it combined pulp and paper making instead of separating the two operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Back Water bodies in Thorold Township. The surveyors' measurements and notes can be seen in red and black ink and pencil. A number of trees along the shores presumably used in the measurements are labelled. Local area landmarks are also identified and include streets and roads(ex. Road to Beaverdams), Shriner's Dwelling Home, a barn, and the Back Water bodies. Properties and property owners of note are: Lots 27, 28, and 29, W. Bouck, D. Shriner, and Rev. T. B. Fuller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the canal in Thorold Township near Port Robinson. Identified structures associated with the Canal include towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include roads (ex. Road to Font Hill), bridges, Back Water, and Vanalstines Creek. Properties and property owners of note are: Lots 203, 204, and 205, John Coulter, and Samuel Hill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Back Water from the canal in Thorold Township near Port Robinson. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include the Back Water from the canal. Properties and property owners of note are: Lots 205 and 206, and McAlpine.