9 resultados para Spectral angle mappers
em Brock University, Canada
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
The mass spectra of compounds of t he series (C6F5 )3-n MP~ (n = 1,2,3, M = P and As ), (C6F5>3Sb, Ph) Sb and (C6F5 )2SbPh have been studied in detail and the important modes of fragmentation were e1ucidated, a ided by metastable ions. Various trends attributed to the central atom and or the . substituent groups have been noted and, where applicable, compared to recent studies on related phenyl and pentafluorophenyl compounds of groups IV and V. The mass spectra of fluorine containing organometallic compounds exhibit characteristic migrations of fluorine to t he central atom, giving an increasing abundance of MF+, MF2+' and RMF+ (R = Ph or C6F5) ions on descending the group_ The mass spectra of pentafluorophenyl , antimony, and arsenic compounds show a greater fragmentation of the aromatic ring than those of phosphorus. The mixed phenyl pentafluorophenyl derivatives show a characteristic pattern depending on the number of phenyl grm.lps present but show t he general characteristics of both the tris(phenyl) and tris(pentafluorophenyl) compounds. The diphenyl pentafluorophenyl der ivatives show the loss of biphenyl ion as the most import ant step, the los s of phenyl t o give the i on PhMC6F5 + being of secondary importance. The ,bis(pentafluorophenyl) phenyl derivatives fragment primarily by loss of PhC6F5 to give C6F5M+ ions, the abundance of t hese increasing r apidly from phosphorus to arsenic. This species then, exhibits a characteristic fragmentation observed in the tris(penta- fluorophenyl ) compounds. However, the abundance of (C6F5)2M+ species in these compounds i s small. I ons of the type C6H4MC6F4 + and tetrafluorobiphenylene ions C6H4C6F4 + also are observed on substitution of a phenyl group for a penta- fluorophenyl group. The fully fluorinated species (C6F4)2M+ is not observed, although octafluorobiphenylene ions , (C6F4)2+' are evident in several spectra . The appearance potentials of the major ions were obtatned from the ionisation efficiency curves. Attempts were made to correlate these to the effect of the central atom in substituent groups, but the large errors involved prevented the reaching of quantitative conclusions, although it would appear that the electron is removed from the ligand in the ionisation of t he parent molecule .
Resumo:
2-Carboxy-2?-methyldiphenyl sulfide was prepared by the Ullmann reaction and cyclodehydrated by sulfuric acid to afford 4-methylthioxanthone. 1-Methylthioxanthone was separated from the reaction mixture obtained upon cyclodehydration of 2-carboxy-3f-methyldiphenyl sulfide. In addition, 1-, 2-, 3- and 4-methylthioxanthone 10,10-dioxides were synthesized by oxidation of the corresponding thioxanthones. o-, m- and p-N-Tolylanthranilic acids were prepared by the Ullmann reaction and used as precursors for the preparation of 1-, 2- and 4- methyl-9-chloroacridine and finally 1-, 2-, 3- and 4-methylacridone. High resolution, 60 MHz PMR spectra were obtained on the four monomethyl isomers of xanthone, thioxanthone, thioxanthone 10,10-dioxide and acridone, and on 1-, 2- and 4-methyl-9-chloroacridine. For some compounds, coupling of all three different aromatic protons to the methyl was observed, two of the couplings typically being smaller than the third. With the large (ortho) coupling being on the order of 0.5 to 1.0 Hz, it was necessary to decouple the aromatic part of the spectrum. The magnitude of the ortho benzylic constant may be related to an incomplete Tr-bond delocalization in the molecules.
Resumo:
High chromium content in kimberlite indicator minerals such as pyrope garnet and diopside is often correlated with the presence of diamonds. In this study, kimberlite indicator minerals were examined using visible light reflectance spectroscopy to determine if chromium content can be correlated with spectral absorption features. The depth of absorption features in the visible spectral region were correlated with the molecular percentage of chromium and other first series transition metal elements obtained by electron microprobe data. In the visible part of the spectrum, chromium is evident by 3 absorption features in the pyrope reflectance spectrum; one isolated and narrow feature at the wavelength 689 nm was used to correlate with the chromium mol %. The isolation of this feature in the pyrope spectra is advantageous since it is not directly affected by other proximal absorption bands that could be caused by other transition metals. Analysis of the feature indicates that as grain volume increases the depth of the absorption feature will also increase. Clustering grain volumes into fractions yields better correlation between absorption depth and mol % chromium. Other types of garnet (almandine, grossular, spessartine) and kimberlite indicator minerals (olivine, diopside, chromite, ilmenite) were analyzed to determine if other absorption features could be used to predict the proportion of specific transition metal elements. Diopside in particular illustrates the same isolated chromium absorption feature as pyrope and may indicate mol percent but needs further study with larger sample sets.
Resumo:
Four men, same men from a previous photograph, standing in the water of the tunnel.
Resumo:
Black and white photographs, 19 cm x 24 cm of the interior of an unidentified house the sitting room which was mentioned above, but this shot is taken from farther away. A fireplace is visible in the room. The photograph was taken by Wurts Brothers General Photographers of New York City (2 copies).
Resumo:
Black and white photograph, mounted on board, 7 cm x 4 cm, of Julia in a side angle face pose. This photo was taken by Fred Pfaff of Peach Street, Erie, Pennsylvania.
Resumo:
Black and white photograph, 23 cm x 17 cm, of Margaret Julia Woodruff Band in a seated position, taken from a side angle. She is wearing a lace dress. The photo was taken by Dudley Hoyt of New York.