8 resultados para Spectral analysis

em Brock University, Canada


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of the current undertaking was to study the electrophysiological properties of the sleep onset period (SOP) in order to gain understanding into the persistent sleep difficulties of those who complain of insomnia following mild traumatic brain injury (MTBI). While many believe that symptoms of post concussion syndrome (PCS) following MTBI resolve within 6 to 12 months, there are a number of people who complain of persistent sleep difficulty. Two models were proposed which hypothesize alternate electrophysiological presentations of the insomnia complaints of those sustaining a MTBI: 1) Analyses of standard polysomnography (PSG) sleep parameters were conducted in order to determine if the sleep difficulties of the MTBI population were similar to that of idiopathic insomniacs (i.e. greater proportion ofREM sleep, reduced delta sleep); 2) Power spectral analysis was conducted over the SOP to determine if the sleep onset signature of those with MTBI would be similar to psychophysiological insomniacs (characterized by increased cortical arousal). Finally, exploratory analyses examined whether the sleep difficulties associated with MTBI could be explained by increases in variability of the power spectral data. Data were collected from 9 individuals who had sustained a MTBI 6 months to 5 years earlier and reported sleep difficulties that had arisen within the month subsequent to injury and persisted to the present. The control group consisted of 9 individuals who had experienced neither sleep difficulties, nor MTBI. Previous to spending 3 consecutive uninterrupted nights in the sleep lab, subjects completed questionnaires regarding sleep difficulties, adaptive functioning, and personality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The EEG of the sleep onset period of psychophysiological insomniacs, psychiatric insomniacs and controls was compared using power spectral analysis (FFT). Eighteen drug-free subjects were equally divided into three groups according to their responses in the Brock Sleep and Insomnia Questionnaire, the Minnesota Multiphasic Personality Inventory and the Sleep Disorders Questionnaire. Group 1 consisted of psychophysiological insomniacs, group 2 included insomniacs with an indication of psychiatric disturbances, and group 3 was a control group. EEG, EOG and EMG were recorded for two consecutive nights. Power spectral analysis (FFT) of EEG at C4 from the sleep onset period (defined as lights out to the first five minutes of stage 2) was performed on all standard frequency bands, delta: .5-4 Hz; theta: 4-8 Hz; alpha: 8-12 Hz; sigma: 12-15 Hz beta: 15-25 Hz. Psychophysiological insomniacs had less alpha during wakefulness than the other two groups and did not show the dramatic drop in alpha across the sleep onset period, which characterizes normal sleep. They also had less delta, especially during stage 2 on night 2. They also showed less delta in the last quartile of the chronological analysis of the sleep onset period. Psychiatric insomniacs showed lower relative beta power values overall while psychophysiological insomniacs showed higher relative beta power values during wakefulness. This microanalysis 11 confirms that the sleep onset period is generally similar for psychiatric insomniacs and normal sleepers. This may be due to the sample of psychiatric insomniacs being heterogeneous or may reflect a sleep onset system that is essentially intact. Psychophysiological insomniacs have higher cortical arousal during the sleep onset period than do the psychiatric insomniacs and the controls. Clear differences in the sleep onset period of psychophysiological insomniacs exist. The dramatic changes in power values in these two groups are not seen in the psychophysiological insomniacs, which may make the discrimination between wakefulness and sleep more difficult.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sleep spindles have been found to increase following an intense period of learning on a combination of motor tasks. It is not clear whether these changes are task specific, or a result of learning in general. The current study investigated changes in sleep spindles and spectral power following learning on cognitive procedural (C-PM), simple procedural (S-PM) or declarative (DM) learning tasks. It was hypothesized that S-PM learning would result in increases in Sigma power during Non-REM sleep, whereas C-PM and DM learning would not affect Sigma power. It was also hypothesized that DM learning would increase Theta power during REM sleep, whereas S-PM and C-PM learning would not affect Theta power. Thirty-six participants spent three consecutive nights in the sleep laboratory. Baseline polysomnographic recordings were collected on night 2. Participants were randomly assigned to one of four conditions: C-PM, S-PM, DM or control (C). Memory task training occurred on night 3 followed by polysomnographic recording. Re-testing on respective memory tasks occurred one-week following training. EEG was sampled at 256Hz from 16 sites during sleep. Artifact-free EEG from each sleep stage was submitted to power spectral analysis. The C-PM group made significantly fewer errors, the DM group recalled more, and the S-PM improved on performance from test to re-test. There was a significant night by group interaction for the duration of Stage 2 sleep. Independent t-tests revealed that the S-PM group had significantly more Stage 2 sleep on the test night than the C group. The C-PM and the DM group did not differ from controls in the duration of Stage 2 sleep on test night. There was no significant change in the duration of slow wave sleep (SWS) or REM sleep. Sleep spindle density (spindles/minute) increased significantly from baseline to test night following S-PM learning, but not for C-PM, DM or C groups. This is the first study to have shown that the same pattern of results was found for spindles in SWS. Low Sigma power (12-14Hz) increased significantly during SWS following S-PM learning but not for C-PM, DM or C groups. This effect was maximal at Cz, and the largest increase in Sigma power was at Oz. It was also found that Theta power increased significantly during REM sleep following DM learning, but not for S-PM, C-PM or C groups. This effect was maximal at Cz and the largest change in Theta power was observed at Cz. These findings are consistent with the previous research that simple procedural learning is consolidated during Stage 2 sleep, and provide additional data to suggest that sleep spindles across all non-REM stages and not just Stage 2 sleep may be a mechanism for brain plasticity. This study also provides the first evidence to suggest that Theta activity during REM sleep is involved in memory consolidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous research has demonstrated superior learning by participants presented with augmented task information retroactively versus proactively (Patterson & Lee, 2008; 2010). Theoretical explanations of these findings are related to the cognitive effort invested by participants during motor skill acquisition. The present study extended previous research by utilizing the physiological index, power spectral analysis of heart rate variability, previously shown to be sensitive to the degree of cognitive effort invested during the performance of a motor task (e.g., increase cognitive effort results in increased LF/HF ratio). Participants were required to learn 18 different key-pressing sequences. As expected, the proactive condition demonstrated superior RS during acquisition, with the retroactive condition demonstrating superior RS during retention. Measures of LF/HF ratio indicated the retroactive participants were investing significantly less cognitive effort in the retention period compared to the proactive participants (p< .05) as a function of learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TITLE: The normal co-ordinate analysis, vibrational spectra and theoretical infrared intensities of some thiocarbonyl halides. AUTHOR: J. L. Brema SUPERVISOR: Dr. D. C. Moule NUMBER OF PAGES: 89 ABSTRACT: The vibrational assignment of the five-in-plane fundamental modes of CSClBr has been made on the basis of infrared gas phase and liquid Raman spectral analyses to supplement our earlier vibrational studies. Even though the one out-of-plane fundamental was not observed spectroscopically an attempt has been made to predict its frequency. The vibrational spectra contained impurity bands and the CSClBr assignment was made only after a thorough analysis of the impurities themselves. A normal co-ordinate analysis calculation was performed assuming a Urey-Bradley force field. This calculation yielded the fundamental frequencies in good agreement with those observed after refinement of the originally transferred force constants. The theoretical frequencies are the eigenvalues of the secular equation and the calculation also gave the corresponding eigenvectors in the form of the very important LLj matrix. The [l] matrix is the transfoirmation between internal co-ordinates and normal co-ordinates and it is essential for Franck-Condon calculations on electronically excited molecules and for infrared Integrated band intensity studies. Using a self-consistent molecular orbital calculation termed "complete neglect of differential overlap" (CNDO/2) , theoretical values of equilibrium bond lengths and angleswere calcuted for a series of carbonyl and thlocarbonyl molecules. From these calculations valence force field force constants were also determined but with limited success. With the CNIX)/2 method theoretical dipole moment derivatives with respect to symmetrized internal co-ordinates were calculated and the results should be useful in a correlation with experimentally determined values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-Carboxy-2?-methyldiphenyl sulfide was prepared by the Ullmann reaction and cyclodehydrated by sulfuric acid to afford 4-methylthioxanthone. 1-Methylthioxanthone was separated from the reaction mixture obtained upon cyclodehydration of 2-carboxy-3f-methyldiphenyl sulfide. In addition, 1-, 2-, 3- and 4-methylthioxanthone 10,10-dioxides were synthesized by oxidation of the corresponding thioxanthones. o-, m- and p-N-Tolylanthranilic acids were prepared by the Ullmann reaction and used as precursors for the preparation of 1-, 2- and 4- methyl-9-chloroacridine and finally 1-, 2-, 3- and 4-methylacridone. High resolution, 60 MHz PMR spectra were obtained on the four monomethyl isomers of xanthone, thioxanthone, thioxanthone 10,10-dioxide and acridone, and on 1-, 2- and 4-methyl-9-chloroacridine. For some compounds, coupling of all three different aromatic protons to the methyl was observed, two of the couplings typically being smaller than the third. With the large (ortho) coupling being on the order of 0.5 to 1.0 Hz, it was necessary to decouple the aromatic part of the spectrum. The magnitude of the ortho benzylic constant may be related to an incomplete Tr-bond delocalization in the molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, low-cost concentric capillary nebulizer (CCN) was developed and evaluated for ICP spectrometry. The CCN could be operated at sample uptake rates of 0.050-1.00 ml min'^ and under oscillating and non-oscillating conditions. Aerosol characteristics for the CCN were studied using a laser Fraunhofter diffraction analyzer. Solvent transport efficiencies and transport rates, detection limits, and short- and long-term stabilities were evaluated for the CCN with a modified cyclonic spray chamber at different sample uptake rates. The Mg II (280.2nm)/l\/lg 1(285.2nm) ratio was used for matrix effect studies. Results were compared to those with conventional nebulizers, a cross-flow nebulizer with a Scott-type spray chamber, a GemCone nebulizer with a cyclonic spray chamber, and a Meinhard TR-30-K3 concentric nebulizer with a cyclonic spray chamber. Transport efficiencies of up to 57% were obtained for the CCN. For the elements tested, short- and long-term precisions and detection limits obtained with the CCN at 0.050-0.500 ml min'^ are similar to, or better than, those obtained on the same instrument using the conventional nebulizers (at 1.0 ml min'^). The depressive and enhancement effects of easily ionizable element Na, sulfuric acid, and dodecylamine surfactant on analyte signals with the CCN are similar to, or better than, those obtained with the conventional nebulizers. However, capillary clog was observed when the sample solution with high dissolved solids was nebulized for more than 40 min. The effects of data acquisition and data processing on detection limits were studied using inductively coupled plasma-atomic emission spectrometry. The study examined the effects of different detection limit approaches, the effects of data integration modes, the effects of regression modes, the effects of the standard concentration range and the number of standards, the effects of sample uptake rate, and the effect of Integration time. All the experiments followed the same protocols. Three detection limit approaches were examined, lUPAC method, the residual standard deviation (RSD), and the signal-to-background ratio and relative standard deviation of the background (SBR-RSDB). The study demonstrated that the different approaches, the integration modes, the regression methods, and the sample uptake rates can have an effect on detection limits. The study also showed that the different approaches give different detection limits and some methods (for example, RSD) are susceptible to the quality of calibration curves. Multicomponents spectral fitting (MSF) gave the best results among these three integration modes, peak height, peak area, and MSF. Weighted least squares method showed the ability to obtain better quality calibration curves. Although an effect of the number of standards on detection limits was not observed, multiple standards are recommended because they provide more reliable calibration curves. An increase of sample uptake rate and integration time could improve detection limits. However, an improvement with increased integration time on detection limits was not observed because the auto integration mode was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High chromium content in kimberlite indicator minerals such as pyrope garnet and diopside is often correlated with the presence of diamonds. In this study, kimberlite indicator minerals were examined using visible light reflectance spectroscopy to determine if chromium content can be correlated with spectral absorption features. The depth of absorption features in the visible spectral region were correlated with the molecular percentage of chromium and other first series transition metal elements obtained by electron microprobe data. In the visible part of the spectrum, chromium is evident by 3 absorption features in the pyrope reflectance spectrum; one isolated and narrow feature at the wavelength 689 nm was used to correlate with the chromium mol %. The isolation of this feature in the pyrope spectra is advantageous since it is not directly affected by other proximal absorption bands that could be caused by other transition metals. Analysis of the feature indicates that as grain volume increases the depth of the absorption feature will also increase. Clustering grain volumes into fractions yields better correlation between absorption depth and mol % chromium. Other types of garnet (almandine, grossular, spessartine) and kimberlite indicator minerals (olivine, diopside, chromite, ilmenite) were analyzed to determine if other absorption features could be used to predict the proportion of specific transition metal elements. Diopside in particular illustrates the same isolated chromium absorption feature as pyrope and may indicate mol percent but needs further study with larger sample sets.