3 resultados para Special Driver Control Equipment Requirements.

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both learning and basic biological mechanisms have been shown to play a role in the control of protein int^e. It has previously been shown that rats can adapt their dietary selection patterns successfully in the face of changing macronutrient requirements and availability. In particular, it has been demonstrated that when access to dietary protein is restricted for a period of time, rats selectively increase their consumption of a proteincontaining diet when it becomes available. Furthermore, it has been shown that animals are able to associate various orosensory cues with a food's nutrient content. In addition to the role that learning plays in food intake, there are also various biological mechanisms that have been shown to be involved in the control of feeding behaviour. Numerous studies have documented that various hormones and neurotransmitter substances mediate food intake. One such hormone is growth hormone-releasing factor (GRF), a peptide that induces the release of growth hormone (GH) from the anterior pituitary gland. Recent research by Vaccarino and Dickson ( 1 994) suggests that GRF may stimulate food intake by acting as a neurotransmitter in the suprachiasmatic nucleus (SCN) and the adjacent medial preoptic area (MPOA). In particular, when GRF is injected directly into the SCN/MPOA, it has been shown to selectively enhance the intake of protein in both fooddeprived and sated rats. Thus, GRF may play a role in activating protein consumption generally, and when animals have a need for protein, GRF may serve to trigger proteinseeking behaviour. Although researchers have separately examined the role of learning and the central mechanisms involved in the control of protein selection, no one has yet attempted to bring together these two lines of study. Thus, the purpose of this study is to join these two parallel lines of research in order to further our understanding of mechanisms controlling protein selection. In order to ascertain the combined effects that GRF and learning have on protein intake several hypothesis were examined. One major hypothesis was that rats would successfully alter their dietary selection patterns in response to protein restriction. It was speculated that rats kept on a nutritionally complete maintenance diet (NCMD) would consume equal amount of the intermittently presented high protein conditioning diet (HPCD) and protein-free conditioning diet (PFCD). However, it was hypothesized that rats kept on a protein-free maintenance diet (PFMD) would selectively increase their intake of the HPCD. Another hypothesis was that rats would learn to associate a distinct marker flavour with the nutritional content of the diets. If an animal is able to make the association between a marker flavour and the nutrient content of the food, then it is hypothesized that they will consume more of a mixed diet (equal portion HPCD and PFCD) with the marker flavour that was previously paired with the HPCD (Mixednp-f) when kept on the PFMD. In addition, it was hypothesized that intracranial injection of GRF into the SCN/MPOA would result in a selective increase in HPCD as well as Mixednp-t consumption. Results demonstrated that rats did in fact selectively increase their consumption of the flavoured HPCD and Mixednp-f when kept on the NCMD. These findings indicate that the rats successfully learned about the nutrient content of the conditioning diets and were able to associate a distinct marker flavour with the nutrient content of the diets. However, the results failed to support previous findings that GRF increases protein intake. In contrast, the administration of GRF significantly reduced consumption of HPCD during the first hour of testing as compared to the no injection condition. In addition, no differences in the intake of the HPCD were found between the GRF and vehicle condition. Because GRF did not selectively increase HPCD consumption, it was not surprising that GRF also did not increase MixedHP-rintake. What was interesting was that administration of GRF and vehicle did not reduc^Mixednp-f consumption as it had decreased HPCD consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive control involves the ability to flexibly adjust cognitive processing in order to resist interference and promote goal-directed behaviour. Although frontal cortex is considered to be broadly involved in cognitive control, the mechanisms by which frontal brain areas implement control functions are unclear. Furthermore, aging is associated with reductions in the ability to implement control functions and questions remain as to whether unique cortical responses serve a compensatory role in maintaining maximal performance in later years. Described here are three studies in which electrophysiological data were recorded while participants performed modified versions of the standard Sternberg task. The goal was to determine how top-down control is implemented in younger adults and altered in aging. In study I, the effects of frequent stimulus repetition on the interference-related N450 were investigated in a Sternberg task with a small stimulus set (requiring extensive stimulus resampling) and a task with a large stimulus set (requiring no stimulus resampling).The data indicated that constant stimulus res amp ling required by employing small stimulus sets can undercut the effect of proactive interference on the N450. In study 2, younger and older adults were tested in a standard version of the Sternberg task to determine whether the unique frontal positivity, previously shown to predict memory impairment in older adults during a proactive interference task, would be associated with the improved performance when memory recognition could be aided by unambiguous stimulus familiarity. Here, results indicated that the frontal positivity was associated with poorer memory performance, replicating the effect observed in a more cognitively demanding task, and showing that stimulus familiarity does not mediate compensatory cortical activations in older adults. Although the frontal positivity could be interpreted to reflect maladaptive cortical activation, it may also reflect attempts at compensation that fail to fully ameliorate agerelated decline. Furthermore, the frontal positivity may be the result of older adults' reliance on late occurring, controlled processing in contrast to younger adults' ability to identify stimuli at very early stages of processing. In the final study, working memory load was manipulated in the proactive interference Sternberg task in order to investigate whether the N450 reflects simple interference detection, with little need for cognitive resources, or an active conflict resolution mechanism that requires executive resources to implement. Independent component analysis was used to isolate the effect of interference revealing that the canonical N450 was based on two dissociable cognitive control mechanisms: a left frontal negativity that reflects active interference resolution, , but requires executive resources to implement, and a right frontal negativity that reflects global response inhibition that can be relied on when executive resources are minimal but at the cost of a slowed response. Collectively, these studies advance understanding of the factors that influence younger and older adults' ability to satisfy goal-directed behavioural requirements in the face of interference and the effects of age-related cognitive decline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The learning gap created by summer vacation creates a significant breach in the learning cycle, where student achievement levels decrease over the course ofthe summer (Cooper et aI., 2000). In a review of 39 studies, Cooper and colleagues (1996) specified that the summer learning shortfall equals at least one month loss of instruction as measured by grade level equivalents on standardized test scores. Specifically, the achievement gap has a more profound effect on children as they grow older, where there is a steady deterioration in knowledge and skills sustained during the summer months (Cooper et aI., 1996; Kerry & Davies, 1998). While some stakeholders believe that the benefits of a summer vacation overshadow the reversing effect on achievement, it is the impact of the summer learning gap on vulnerable children, including children who are disadvantaged as a result of requiring special educational needs, children from low socioeconomic backgrounds, and children learning English as a second language, that is most problematic. More specifically, research has demonstrated that it is children's literacy-based skills that are most affected during the summer months. Children from high socioeconomic backgrounds recurrently showed gains in reading achievement over the summer whereas disadvantaged children repeatedly illustrate having significant losses. Consequently, the summer learning gap was deemed to exaggerate the inequality experienced by children from low socioeconomic backgrounds. Ultimately, the summer learning gap was found to have the most profound on vulnerable children, placing these children at an increased chance for academic failure. A primary feature of this research project was to include primary caregivers as authentic partners in a summer family literacy program fabricated to scaffold their children's literacy-based needs. This feature led to the research team adapting and implementing a published study entitled, Learning Begins at Home (LBH): A Research-Based Family Literacy Program Curriculum. Researchers at the Ontario Institute designed this program for the Study of Education, University of Toronto. The LBH program capitalized on incorporating the flexibility required to make the program adaptable to meet the needs of each participating child and his or her primary caregiver. As it has been well documented in research, the role primary caregivers have in an intervention program are the most influential on a child's future literacy success or failure (Timmons, 2008). Subsequently, a requirement for participating in the summer family literacy program required the commitment of one child and one of his or her primary caregivers. The primary caregiver played a fundamental role in the intervention program through their participation in workshop activities prior to and following hands on work with their child. The purpose of including the primary caregiver as an authentic partner in the program was to encourage a definitive shift in the family, whereby caregivers would begin to implement literacy activities in their home on a daily basis. The intervention program was socially constructed through the collaboration of knowledge. The role ofthe author in the study was as the researcher, in charge of analyzing and interpreting the results of the study. There were a total of thirty-six (36) participants in the study; there were nineteen (19) participants in the intervention group and seventeen (17) participants in the control group. All of the children who participated in the study were enrolled in junior kindergarten classrooms within the Niagara Catholic District School Board. Once children were referred to the program, a Speech and Language Pathologist assessed each individual child to identify if they met the eligibility requirements for participation in the summer family literacy intervention program. To be eligible to participate, children were required to demonstrate having significant literacy needs (i.e., below 25%ile on the Test of Preschool Early Literacy described below). Children with low incident disabilities (such as Autism or Intellectual Disabilities) and children with significant English as a Second Language difficulties were excluded from the study. The research team utilized a standard pre-test-post-test comparison group design whereby all participating children were assessed with the Test of Preschool Early Literacy (Lonigan et aI., 2007), and a standard measure of letter identification and letter sound understanding. Pre-intervention assessments were conducted two weeks prior to the intervention program commencing, and the first set of the post-intervention assessments were administered immediately following the completion of the intervention program. The follow-up post-intervention assessments took place in December 2010 to measure the sustainability of the gains obtained from the intervention program. As a result of the program, all of the children in the intervention program scored statistically significantly higher on their literacy scores for Print Knowledge, Letter Identification, and Letter Sound Understanding scores than the control group at the postintervention assessment point (immediately following the completion of the program) and at the December post-intervention assessment point. For Phonological Awareness, there was no statistically significant difference between the intervention group and the control at the postintervention assessment point, however, there was a statistically significant difference found between the intervention group and the control group at the December post-intervention assessment point. In general, these results indicate that the summer family literacy intervention program made an immediate impact on the emergent literacy skills of the participating children. Moreover, these results indicate that the summer family literacy intervention program has the ability to foster the emergent literacy skills of vulnerable children, potentially reversing the negative effect the summer learning gap has on these children.