3 resultados para Spatial Science
em Brock University, Canada
Resumo:
This study is a secondary data analysis of the Trends in Mathematics and Science Study 2003 (TIMSS) to determine if there is a gender bias, unbalanced number of items suited to the cognitive skill of one gender, and to compare performance by location. Results of the Grade 8, math portion of the test were examined. Items were coded as verbal, spatial, verbal /spatial or neither and as conventional or unconventional. A Kruskal- Wallis was completed for each category, comparing performance of students from Ontario, Quebec, and Singapore. A Factor Analysis was completed to determine if there were item categories with similar characteristics. Gender differences favouring males were found in the verbal conventional category for Canadian students and in the spatial conventional category for students in Quebec. The greatest differences were by location, as students in Singapore outperformed students from Canada in all areas except for the spatial unconventional category. Finally, whether an item is conventional or unconventional is more important than whether the item is verbal or spatial. Results show the importance of fair assessment for the genders in both the classroom and on standardized tests.
Resumo:
Spatial data representation and compression has become a focus issue in computer graphics and image processing applications. Quadtrees, as one of hierarchical data structures, basing on the principle of recursive decomposition of space, always offer a compact and efficient representation of an image. For a given image, the choice of quadtree root node plays an important role in its quadtree representation and final data compression. The goal of this thesis is to present a heuristic algorithm for finding a root node of a region quadtree, which is able to reduce the number of leaf nodes when compared with the standard quadtree decomposition. The empirical results indicate that, this proposed algorithm has quadtree representation and data compression improvement when in comparison with the traditional method.
Resumo:
Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras.