4 resultados para Soft chemical method
em Brock University, Canada
Resumo:
Linear alkylbenzenes, LAB, formed by the Alel3 or HF catalyzed alkylation of benzene are common raw materials for surfactant manufacture. Normally they are sulphonated using S03 or oleum to give the corresponding linear alkylbenzene sulphonates In >95 % yield. As concern has grown about the environmental impact of surfactants,' questions have been raised about the trace levels of unreacted raw materials, linear alkylbenzenes and minor impurities present in them. With the advent of modem analytical instruments and techniques, namely GCIMS, the opportunity has arisen to identify the exact nature of these impurities and to determine the actual levels of them present in the commercial linear ,alkylbenzenes. The object of the proposed study was to separate, identify and quantify major and minor components (1-10%) in commercial linear alkylbenzenes. The focus of this study was on the structure elucidation and determination of impurities and on the qualitative determination of them in all analyzed linear alkylbenzene samples. A gas chromatography/mass spectrometry, (GCIMS) study was performed o~ five samples from the same manufacturer (different production dates) and then it was followed by the analyses of ten commercial linear alkylbenzenes from four different suppliers. All the major components, namely linear alkylbenzene isomers, followed the same elution pattern with the 2-phenyl isomer eluting last. The individual isomers were identified by interpretation of their electron impact and chemical ionization mass spectra. The percent isomer distribution was found to be different from sample to sample. Average molecular weights were calculated using two methods, GC and GCIMS, and compared with the results reported on the Certificate of Analyses (C.O.A.) provided by the manufacturers of commercial linear alkylbenzenes. The GC results in most cases agreed with the reported values, whereas GC/MS results were significantly lower, between 0.41 and 3.29 amu. The minor components, impurities such as branched alkylbenzenes and dialkyltetralins eluted according to their molecular weights. Their fragmentation patterns were studied using electron impact ionization mode and their molecular weight ions confirmed by a 'soft ionization technique', chemical ionization. The level of impurities present i~ the analyzed commercial linear alkylbenzenes was expressed as the percent of the total sample weight, as well as, in mg/g. The percent of impurities was observed to vary between 4.5 % and 16.8 % with the highest being in sample "I". Quantitation (mg/g) of impurities such as branched alkylbenzenes and dialkyltetralins was done using cis/trans-l,4,6,7-tetramethyltetralin as an internal standard. Samples were analyzed using .GC/MS system operating under full scan and single ion monitoring data acquisition modes. The latter data acquisition mode, which offers higher sensitivity, was used to analyze all samples under investigation for presence of linear dialkyltetralins. Dialkyltetralins were reported quantitatively, whereas branched alkylbenzenes were reported semi-qualitatively. The GC/MS method that was developed during the course of this study allowed identification of some other trace impurities present in commercial LABs. Compounds such as non-linear dialkyltetralins, dialkylindanes, diphenylalkanes and alkylnaphthalenes were identified but their detailed structure elucidation and the quantitation was beyond the scope of this study. However, further investigation of these compounds will be the subject of a future study.
Resumo:
Ox amyl , an insecticide/nematicide with the chemical name; methyl ~'. ~·-dimethyl-~-(methylcarbamoyl)oxy-l-thiooxamimidate, and its major degradation compound; oxime or oximino compound, methyl ~',~'-dimethyl-~-hydroxy-l-thiooxamimidate were studied in this work. NMR and mass spectrometry were utilized in the structural studies. An attempt was made to explain the fragmentation patterns of some major peaks in the mass spectra of oxamyl and oxime. A new gas chromatographic method for the detection and determination of submicrogram levels of intact oxamyl using a electron-capture detector was developed. The principle of this method is to produce a derivative which is highly sensitive to an electron-capture detector. The derivative described is dinitrophenyl methylamine( DNPMA ) • Experimental conditions such as pH , reaction temperature , reaction time, the amount of reagent ( Dinitrofluaro benzene) etc. were thoroughly investigated and optimized. This method was successfully applied to the determination of oxamyl residues in tobacco leaves and soil. Throughout this J9D:oject , thin layer chromatography was also used in the separation:and clean up of oxamyl and oxime samples.
Resumo:
The cr ystal structure of the compound 2-benzoylethylidene-3-(2,4- dibromophenyl)-2,3-dihydro-5-phenyl-l,3,4-thiadiazole* C23H16Br2NZOS (BRMEO) has been determined by using three dimensiona l x-ray diffraction data. The crys tal form is monoclinic, space group P21/c, a = 17.492(4), o -.t' 0 R 0 b =: 16.979(1), c = 14.962(1) A, "X. =o= 90 ',= 106.46(1) , z = 8, graphite-monochromatized Mo~ rad iation, Jl= 0.710J3~, D = 1.62g/cc and o D = 1.65g/cc. The data were col lected on ~ Nonius CAD-4 c diffractometer. The following atoms were made anisotropic: Br, S, N, 0, C7, and C14-C16 for each i ndependent molecu le ; the rest were left isotropic. For 3112 independent refl ec tions with F > 6G\F), R == 0.057. The compound has two independent molecules within the asymmetric unit. Two different conformers were observed which pack well together. /l The S---O interaction distances of 2.493(6) and 2 . 478(7) A were observed for molecules A and B respectively. These values are consistent with earlier findings for 2-benzoylmethylene-3-(2,4-dibromophenyl)- ~~ 2,3-dihydro-5-phenyl-l,3,4-thiadiazole C22H14Br2N20S (BRPHO) and 2-benzoylpropylidene-3-(2,4-dibromophenyl)-2,3-dihydroiii ,'r 5-phenyl-l,3,4-thiadiazole C24H18Br2N20S (BRPETO ) where S---O distances are l ess than the van der Waals (3.251\) but greater than those expected for () a single bond (1.50A). From the results and the literature it appears obvious that the energy/reaction coordinate pathway has a minimum between the end structures (the mono- and bicyclic compounds). * See reference (21) for nomenclature.
Resumo:
The cholesterol chelating agent, methyl-b-cyclodextrin (MbCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MbCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MbCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MbCD impaired impulse propagation and decreased EJP amplitude by 40% (P,0.05) in preparations from crayfish acclimatized to 14uC but not from those acclimatized to 21uC. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P,0.05). MbCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and coldacclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P,0.05; 50% reduction in warm, P,0.05). MbCD reduced cholesterol in isolated nerve and muscle from cold- and warmacclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P,0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MbCD on glutamatesensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MbCD can affect both presynaptic and postsynaptic properties, and that some effects of MbCD are unrelated to cholesterol chelation.