4 resultados para Sodium iron ethylenediaminetetraacetic acid
em Brock University, Canada
Resumo:
Analytical methods for the determination of trace amounts of germanium, tin and arsenic were established using hydride generation coupled with direct current plasma atomic emission spectrometry. A continuous gas flowing batch system for the hydride generation was investigated and was applied to the determination of germanium(Ge), tin(Sn), antimony(Sb) and lead(Pb) (Preliminary results suggest that it is also applicable to arsenic)As) ). With this system, the reproducibility of signals was improved and the determination was speeded up, compared with the conventional batch type hydride generation system. Each determination was complete within one minute. Interferences from a number of transition metal ions, especially from Pd(II), Pt(IV), Ni(II), Cu(II), Co(II), and Fe(II, III), have proven to be very serious under normal conditions, in the determination of germanium, tin, and arsenic. These interference effects were eliminated or significantly reduced in the presence of L-cystine or L-cysteine. Thus, a 10-1000 fold excess of Ni(II), Cu(II), Co(II), Fe(II), Pt(IV), Pd(II), etc. can be tolerated without interference, In the presence of L-cystine or L-cysteine, compared with absence of interference reducing agent. The methods for the determination of Ge, Sn, and As were examined by the analyses of standard reference materials. Interference effects from the sample matrix, for example, in transition metal-rich samples, copper, iron and steel, were eliminated by L-cystine (for As and Sn) and by LI cysteine (for Ge). The analysis of a number of standard reference materials gave excellent results of As and Sn contents in agreement with the certified values, showing there was no systematic interference. The detection limits for both germanium and tin were 20 pg ml- I . Preliminary studies were carried out for the determination of antimony and lead. Antimony was found to react with NaBH4, remaInIng from the previous determinations, giving an analytical signal. A reversed injection manner, i.e., injection of the NaBH4 solution prior to the analyte solution was used to avoid uncertainty caused by residual NaBH4 present and to ensure that an excess of NaB H4 was available. A solution of 0.4% L-cysteine was found to reduce the interference from selected transition metal ions, Co(II), Cu(II), Ni(II) and Pt(IV). Hydrochloric acid - hydrogen peroxide, nitric acid - ammonium persulphate, and potassium dichromate malic acid reaction systems for lead hydride generation were compared. The potassium dichromate - malic acid reaction medium proved to be the best with respect to reproducibility and minimal interference. Cu(II), Ni(II), and Fe(II) caused strong interference In lead determinations, which was not reduced by L-cysteine or Lcystine. Sodium citrate, ascorbic acid, dithizone, thiosemicarbazide and penicillamine reduced interferences to some extent. Further interference reduction studies were carried out uSIng a number of amino acids, glycine, alanine, valine, leucine and histidine, as possible interference reducing agents in the determination of germanium. From glycine, alanine, valine to leucine, the interference reduction effect in germanium determinations decreased. Histidine II was found to be very promising In the reduction of interference. In fact, histidine proved more efficient than L-cystine and L-cysteine In the reduction of interference from Ni(II) in the determination of germanium. Signal enhancement by easily ionized elements (EIEs), usually regarded as an interference effect in analysis by DCP-AES, was studied and successfully applied to advantage in improving the sensitivity and detection limit in the determination of As, Ge, Sn, Sb, and Pb. The effect of alkali and alkaline-earth elements on the determination of the above five hydride forming elements was studied. With the appropriate EIE, a signal enhancement of 40-115% was achieved. Linear calibration and good reproducibility were also obtained in the presence of EIEs. III
Resumo:
This investigation has three purposes I to make a comparative chemical study on sediment cores collected for Lake Lisgar (man-made lake in an urban center) and Lake Hunger (natural basin in a rural community) encompassing the time since European settlement I to determine the postglacial chemical history of Lake Hunger, and to determine the vegetational history of the Lake Hunger area from postglacial time to the present. The minus 80 mesh fraction of 108 soil samples and 18 stream sediment samples collected in the vicinity of Lakes' Lisgar and Hunger were analyzed for cold hydrochloric acid soluble lead, zinc, nickel, cobalt, copper, aluminum, sodium, potassium, calcium, magnesium, iron and manganese. Lacustrine sediments from 5 boreholes in the Lake Lisgar basin were collected. Boreholes 1, 2, 3, and 4 were analyzed for palynological and chemical information and Borehole 5 was subjected to pollen and ostracode analysis. Lacustrine sediments from 6 boreholes in the Lake Hunger basin were collected. Palyno- -logical and chemical analysis were performed on Boreholes 1, 2, 3, 4, and 6 and Borehole 5 was analyzed for pollen. In addition, radiocarbon dates were obtained on sediment samples from Boreholes 4 and 5. A total of 8 surface samples were collected from the margins of the Lake Hunger basin and these were chemically analyzed in the laboratory. All of the lacustrine sediments were ashed and analyzed for cold hydrochloric acid soluble lead, zinc, nickel, cobalt, copper, aluminum, sodium, potassium, calcium, magnesium, iron and manganese using a Perkin Elmer 40) Atomic Absorption spectrophotometer. The results . obtained for the 12 elements were expressed as parts per million in dry sediments. It was found that man's influence on the element distribution patterns in the sediments of Lake Lisgar appeared to be related to his urbanizing developments within the lake vicinity, whereas, the rural developments in the vicinity of lake Hunger appeared to have had little effect on the element distribution patterns in the lake sediments. The distribution patterns of lead, zinc, nickel, cobalt, aluminum, magnesium, sodium and potassium are similar to the % ash curve throughout postglacial time indicating that the rate of erosion in the drainage basin is the main factor which controls the concentration of these elements in the sediments of Lake Hunger. The vegetational history, from palynological analysis, of Lake Hunger from postglacial time to the present includes the following stages: tundra, open spruce forest, closed boreal forest, deciduous forest and the trend towards the re-establishment of pine following the clearing of land and the subsequent settlement of the Lake Hunger area by European settlers. The concentrations of some elements (cobalt, nickel, iron, manganese, calcium, magnesium, sodium and potassium) in the sediments of Lake Hunger appears to be higher during pre-cultural compared to post-cultural times. At least one complete postglacial record of the chemical history within a lake basin is necessary in order to accurately assess man's effects on his environment.
Resumo:
The present thesis describes syntheses, structural studies, and catalytic reactivity of new non-classical silane complexes of ruthenium and iron. The ruthenium complexes CpRu(PPri3)CI(T]2-HSiR3) (1) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were prepared by reactions of the new unsaturated complex CpRu(PPri3)CI with silanes. According to NMR studies and X-ray analyses, the complexes la-c exhibit unusual simultaneous Si··· H and Si··· CI-Ru interactions. The complex CpRu(PPri3)CI was also used for the preparation of the first examples of late transition metal agostic silylamido complexes CpRu(PPri3)(N(T]2-HSiMe2)R) (2) (R= Ar or But), which were characterized by NMR spectroscopy. The iron complexes CpFe(PMePri2)H2(SiR3) (3) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were synthesized by the reaction of the new borohydride iron complex CpFe(PMePri2)(B~) with silanes in the presence NEt3. The complexes 3 exhibit unprecedented two simultaneous and equivalent Si··· H interactions, which was confirmed by X-ray analyses and DFT calculations. A series of cationic ruthenium complexes [CpRu(PR3)(CH3CN)(112-HSiR'3)]BAF (PR3 = PPri 3 (4), PPh3 (5); SiR'3 = SiCh (a), SiClzMe (b), SiClMe2 (c), SiH2Ph (d), SiMe2Ph (e» was obtained by substitution of one of the labile acetonitrile ligands in [CpRu(PR3)(CH3CNh]BAF with sHanes. Analogous complexes [TpRu(PR3)(CH3CN)(T]2 -HSiR' 3)]BAF (5) were obtained by the reaction of TpRu(PR3)(CH3CN)CI with LiBAF in the presence of silanes. The complexes 4-5 were characterized by NMR spectroscopy, and the observed coupling constants J(Si-H) allowed us to estimate the extent of Si-H bond activation in these compounds. The catalytic activity in hydrosilylation reactions of all of the above complexes was examined. The most promising results were achieved with the cationic ruthenium precatalyst [CpRu(PPri3)(CH3CN)2t (6). Complex 6 shows good to excellent catalytic activity in the hydrosilylation of carbonyls, dehydrogenative coupling of silanes with alcohols, amines, acids, and reduction of acid chlorides. We also discovered very selective reduction of nitriles and pyridines into the corresponding N-silyl imines and l,4-dihydropyridines, respectively, at room temperature with the possibility of catalyst recycling. These chemoselective catalytic methods have no analogues in the literature. The reactions were proposed to proceed via an ionic mechanism with intermediate formation of the silane a-complexes 4.
Resumo:
Ionizing radiation is known to initiate apoptosis in mammalian cells by causing the transformation of cytochrome c into a peroxidase, which results in the specific peroxidation of the mitochondrial phospholipid cardiolipin. Here we report the design and synthesis of 8 imidazole fatty acid derivatives that bind to the cyt c:CL complex and inhibit the peroxidase activity required for the initiation of apoptosis. We postulate that imidazole acts as a sixth ligand to the haem iron and stops the interaction with H2O2. Two mitochondrially directed analogues (3-hydroxypropyl)triphenylphosphonium esters) of 12-imidazole-stearic acid and 12-imidazole-oleic acid not only were demonstrated to be peroxidase inhibitors in vitro, but were also extraordinarily effective in protecting mice from lethal doses (9 Gy) of ionization radiation. We studied the structure activity relationship to a group of triphenyl phosphonium derivatives containing imidazole at different positions on the fatty acid chain, and observed that the C8-imidazole stearate analogue had marginally better activity than the others. But overall, the structure activity result were remarkable “flat” with all compounds prepared having rather similar inhibitory strength. We also synthesized carnitine mono and di-esters of 12-imidazole fatty acids but full biological data is not yet available for these compounds.