5 resultados para Sirolimus-eluting Stent
em Brock University, Canada
Resumo:
The effects of sample solvent composition and the injection volume, on the chromatographic peak profiles of two carbamate derivatives, methyl 2-benzimidazolecarbamate (MBC) and 3-butyl-2,4-dioxo[1,2-a]-s-triazinobenzimidazole (STB), were studied using reverse phase high performance liquid chromatograph. The study examined the effects of acetonitrile percentage in the sample solvent from 5 to 50%, effects of methanol percentage from 5 to 50%, effects of pH increase from 4.42 to 9.10, and effect of increasing buffer concentration from ° to 0.12M. The effects were studied at constant and increasing injection mass and at four injection volumes of 10, 50, 100 and 200 uL. The study demonstrated that the amount and the type of the organic solvents, the pH, and the buffer strength of the sample solution can have a pronounced effect on the peak heights, peak widths, and retention times of compounds analysed. MBC, which is capable of intramolecular hydrogen bonding and has no tendency to ionize, showed a predictable increase .in band broadening and a decrease in retention times at higher eluting strengths of the sample solvent. STB, which has a tendency to ionize or to strongly interact with the sample solvent, was influenced in various ways by the changes in ths sample solvent composition. The sample solvent effects became more pronounced as the injection volume increased and as the percentage of organic solvent in the sample solution became greater. The peak height increases for STB at increasing buffer concentrations became much more pronounced at higher analyte concentrations. It was shown that the widely accepted procedure of dissolving samples in the mobile phase does not yield the most efficient chromatograms. For that reason samples should be dissolved in the solutions with higher aqueous content than that of the mobile phase whenever possible. The results strongly recommend that all the samples and standards, regardless whether the standards are external or internal, be analysed at a constant sample composition and a constant injection volume.
Resumo:
Linear alkylbenzenes, LAB, formed by the Alel3 or HF catalyzed alkylation of benzene are common raw materials for surfactant manufacture. Normally they are sulphonated using S03 or oleum to give the corresponding linear alkylbenzene sulphonates In >95 % yield. As concern has grown about the environmental impact of surfactants,' questions have been raised about the trace levels of unreacted raw materials, linear alkylbenzenes and minor impurities present in them. With the advent of modem analytical instruments and techniques, namely GCIMS, the opportunity has arisen to identify the exact nature of these impurities and to determine the actual levels of them present in the commercial linear ,alkylbenzenes. The object of the proposed study was to separate, identify and quantify major and minor components (1-10%) in commercial linear alkylbenzenes. The focus of this study was on the structure elucidation and determination of impurities and on the qualitative determination of them in all analyzed linear alkylbenzene samples. A gas chromatography/mass spectrometry, (GCIMS) study was performed o~ five samples from the same manufacturer (different production dates) and then it was followed by the analyses of ten commercial linear alkylbenzenes from four different suppliers. All the major components, namely linear alkylbenzene isomers, followed the same elution pattern with the 2-phenyl isomer eluting last. The individual isomers were identified by interpretation of their electron impact and chemical ionization mass spectra. The percent isomer distribution was found to be different from sample to sample. Average molecular weights were calculated using two methods, GC and GCIMS, and compared with the results reported on the Certificate of Analyses (C.O.A.) provided by the manufacturers of commercial linear alkylbenzenes. The GC results in most cases agreed with the reported values, whereas GC/MS results were significantly lower, between 0.41 and 3.29 amu. The minor components, impurities such as branched alkylbenzenes and dialkyltetralins eluted according to their molecular weights. Their fragmentation patterns were studied using electron impact ionization mode and their molecular weight ions confirmed by a 'soft ionization technique', chemical ionization. The level of impurities present i~ the analyzed commercial linear alkylbenzenes was expressed as the percent of the total sample weight, as well as, in mg/g. The percent of impurities was observed to vary between 4.5 % and 16.8 % with the highest being in sample "I". Quantitation (mg/g) of impurities such as branched alkylbenzenes and dialkyltetralins was done using cis/trans-l,4,6,7-tetramethyltetralin as an internal standard. Samples were analyzed using .GC/MS system operating under full scan and single ion monitoring data acquisition modes. The latter data acquisition mode, which offers higher sensitivity, was used to analyze all samples under investigation for presence of linear dialkyltetralins. Dialkyltetralins were reported quantitatively, whereas branched alkylbenzenes were reported semi-qualitatively. The GC/MS method that was developed during the course of this study allowed identification of some other trace impurities present in commercial LABs. Compounds such as non-linear dialkyltetralins, dialkylindanes, diphenylalkanes and alkylnaphthalenes were identified but their detailed structure elucidation and the quantitation was beyond the scope of this study. However, further investigation of these compounds will be the subject of a future study.
Resumo:
Factors affecting the detennination of PAHs by capillary GC/MS were studied. The effect of the initial column temperature and the injection solvent on the peak areas and heights of sixteen PAHs, considered as priority pollutants, USillg crosslinked methyl silicone (DB!) and 5% diphenyl, 94% dimethyl, 1% vinyl polysiloxane (DBS) columns was examined. The possibility of using high boiling point alcohols especially butanol, pentanol, cyclopentanol, and hexanol as injection solvents was investigated. Studies were carried out to optimize the initial column temperature for each of the alcohols. It was found that the optimum initial column temperature is dependent on the solvent employed. The peak areas and heights of the PAHs are enhanced when the initial column temperature is 10-20 c above the boiling point of the solvent using DB5 column, and the same or 10 C above the boiling point of the solvent using DB1 column. Comparing the peak signals of the PAHs using the alcohols, p-xylene, n-octane, and nonane as injection solvents, hexanol gave the greatest peak areas and heights of the PAHs particularly the late-eluted peaks. The detection limits were at low pg levels, ranging from 6.0 pg for fluorene t9 83.6 pg for benzo(a)pyrene. The effect of the initial column temperature on the peak shape and the separation efficiency of the PARs was also studied using DB1 and DB5 columns. Fronting or splitting of the peaks was obseIVed at very low initial column temperature. When high initial column temperature was used, tailing of the peaks appeared. Great difference between DB! and.DB5 columns in the range of the initial column temperature in which symmetrical.peaks of PAHs can be obtained is observed. Wider ranges were shown using DB5 column. Resolution of the closely-eluted PAHs was also affected by the initial column temperature depending on the stationary phase employed. In the case of DB5, only the earlyeluted PAHs were affected; whereas, with DB1, all PAHs were affected. An analytical procedure utilizing solid phase extraction with bonded phase silica (C8) cartridges combined with GC/MS was developed to analyze PAHs in water as an alternative method to those based on the extraction with organic solvent. This simple procedure involved passing a 50 ml of spiked water sample through C8 bonded phase silica cartridges at 10 ml/min, dried by passing a gentle flow of nitrogen at 20 ml/min for 30 sec, and eluting the trapped PAHs with 500 Jll of p-xylene at 0.3 ml/min. The recoveries of PAHs were greater than 80%, with less than 10% relative standard deviations of nine determinations. No major contaminants were present that could interfere with the recognition of PAHs. It was also found that these bonded phase silica cartridges can be re-used for the extraction of PAHs from water.
Resumo:
Factors involved in the determination of PAHs (16 priority PAHs as an example) and PCBs (10 PCB congeners, representing 10 isomeric groups) by capillary gas chromatography coupled with mass spectrometry (GC/MS, for PAHs) and electron capture detection (GC/ECD , for PCBs) were studied, with emphasis on the effect of solvent. Having various volatilities and different polarities, solvent studied included dichloromethane, acetonitrile, hexan e, cyclohexane, isooctane, octane, nonane, dodecane, benzene, toluene, p-xylene, o-xylene, and mesitylene. Temperatures of the capillary column, the injection port, the GC/MS interface, the flow rates of carrier gas and make-up gas, and the injection volume were optimized by one factor at a time method or simplex optimization method. Under the optimized conditions, both peak height and peak area of 16 PAHs, especially the late-eluting PAHs, were significantly enhanced (1 to 500 times) by using relatively higher boiling point solvents such as p-xylene and nonane, compared with commonly used solvents like benzene and isooctane. With the improved sensitivity, detection limits of between 4.4 pg for naphthalene and 30.8 pg for benzo[g,h,i]perylene were obtained when p-xylene was used as an injection solvent. Effect of solvent on peak shape and peak intensity were found to be greatly dependent on temperature parameters, especially the initial temperature of the capillary column. The relationship between initial temperature and shape of peaks from 16 PAHs and 10 PCBs were studied and compared when toluene, p-xylene, isooctane, and nonane were used as injection solvents. If a too low initial temperature was used, fronting or split of peaks was observed. On the other hand, peak tailing occurred at a too high initial column temperature. The optimum initial temperature, at which both peak fronting and tailing were avoided and symmetrical peaks were obtained, depended on both solvents and the stationary phase of the column used. On a methyl silicone column, the alkane solvents provided wider optimum ranges of initial temperature than aromatic solvents did, for achieving well-shaped symmetrical GC peaks. On a 5% diphenyl: 1% vinyl: 94% dimethyl polysiloxane column, when the aromatic solvents were used, the optimum initial temperature ranges for solutes to form symmetrical peaks were improved to a similar degree as those when the alkanes were used as injection solvents. A mechanism, based on the properties of and possible interactions among the analyte, the injection solvent, and the stationary phase of the capillary column, was proposed to explain these observations. The effect of initial temperature on peak height and peak area of the 16 PAHs and the 10 PCBs was also studied. The optimum initial temperature was found to be dependent on the physical properties of the solvent used and the amount of the solvent injected. Generally, from the boiling point of the solvent to 10 0C above its boiling point was an optimum range of initial temperature at which cthe highest peak height and peak area were obtained.
Resumo:
Part I - Fluorinated Compounds A method has been developed for the extraction, concentration, and determination of two unique fluorinated compounds from the sediments of Lake Ontario. These compounds originated from a common industrial landfill, and have been carried to Lake Ontario by the Niagara River. Sediment samples from the Mississauga basin of Lake Ontario have been evaluated for these compounds and a depositional trend was established. The sediments were extracted by accelerated solvent extraction (ASE) and then underwent clean-up, fractionation, solvent exchange, and were concentrated by reduction under nitrogen gas. The concentrated extracts were analyzed by gas chromatography - electron capture negative ionization - mass spectrometry. The depositional profile determined here is reflective of the operation of the landfill and shows that these compounds are still found at concentrations well above background levels. These increased levels have been attributed to physical disturbances of previously deposited contaminated sediments, and probable continued leaching from the dumpsite. Part II - Polycyclic Aromatic Hydrocarbons Gas chromatography/mass spectrometry is the most common method for the determination of polycyclic aromatic hydrocarbons (PAHs) from various matrices. Mass discrimination of high-boiling compounds in gas chromatographic methods is well known. The use of high-boiling injection solvents shows substantial increase in the response of late-eluting peaks. These solvents have an increased efficiently in the transfer of solutes from the injector to the analytical column. The effect of I-butanol, I-pentanol, cyclopentanol, I-hexanol, toluene and n-octane, as injection solvents, was studied. Higher-boiling solvents yield increased response for all PAHs. I -Hexanol is the best solvent, in terms of P AH response, but in this solvent P AHs were more susceptible to chromatographic problems such as peak splitting and tailing. Toluene was found to be the most forgiving solvent in terms of peak symmetry and response. It offered the smallest discrepancies in response, and symmetry over a wide range of initial column temperatures.