6 resultados para Single-process Models
em Brock University, Canada
Resumo:
Passive solar building design is the process of designing a building while considering sunlight exposure for receiving heat in winter and rejecting heat in summer. The main goal of a passive solar building design is to remove or reduce the need of mechanical and electrical systems for cooling and heating, and therefore saving energy costs and reducing environmental impact. This research will use evolutionary computation to design passive solar buildings. Evolutionary design is used in many research projects to build 3D models for structures automatically. In this research, we use a mixture of split grammar and string-rewriting for generating new 3D structures. To evaluate energy costs, the EnergyPlus system is used. This is a comprehensive building energy simulation system, which will be used alongside the genetic programming system. In addition, genetic programming will also consider other design and geometry characteristics of the building as search objectives, for example, window placement, building shape, size, and complexity. In passive solar designs, reducing energy that is needed for cooling and heating are two objectives of interest. Experiments show that smaller buildings with no windows and skylights are the most energy efficient models. Window heat gain is another objective used to encourage models to have windows. In addition, window and volume based objectives are tried. To examine the impact of environment on designs, experiments are run on five different geographic locations. Also, both single floor models and multi-floor models are examined in this research. According to the experiments, solutions from the experiments were consistent with respect to materials, sizes, and appearance, and satisfied problem constraints in all instances.
Resumo:
Introduction: Canada’s aging population is diverse and this diversity will continue to grow for the next two decades (Government of Canada, 2002; Katz, 2005; Statistics Canada, 2010). Objective: to examine the relationship between dementia family caregivers’ traditionally-based beliefs about caregiving, their caregiving experience, and their well-being. Method: exploratory secondary data analysis of cross-sectional survey data from 76 community caregivers of persons with dementia in Ontario. Results: traditional values for caregiving was independently associated with coping resources and health status but not depression symptoms. Caregiver self-efficacy and social support both partially mediated the relationship between beliefs about caregiving and caregiver health status. Discussion: Findings from this exploratory study are consistent with stress process models of culture and caregiving. The finding that self-efficacy was associated with traditional values and that it mediated the relationship between traditional values and caregiver well-being is new to the literature.
Resumo:
In the work reported here, optically clear, ultrathin TEOS derived sol-gel slides which were suitable for studies of tryptophan (Trp) fluorescence from entrapped proteins were prepared by the sol-gel technique and characterized. The monitoring of intrinsic protein fluorescence provided information about the structure and environment of the entrapped protein, and about the kinetics of the interaction between the entrapped protein and extemal reagents. Initial studies concentrated on the single Trp protein monellin which was entrapped into the sol-gel matrices. Two types of sol-gel slides, termed "wet aged", in which the gels were aged in buffer and "dry-aged", in which the gels were aged in air , were studied in order to compare the effect of the sol-gel matrix on the structure of the protein at different aging stages. Fluorescence results suggested that the mobility of solvent inside the slides was substantially reduced. The interaction of the entrapped protein with both neutral and charged species was examined and indicated response times on the order of minutes. In the case of the neutral species the kinetics were diffusion limited in solution, but were best described by a sum of first order rate constants when the reactions occurred in the glass matrix. For charged species, interactions between the analytes and the negatively charged glass matrix caused the reaction kinetics to become complex, with the overall reaction rate depending on both the type of aging and the charge on the analyte. The stability and conformational flexibility of the entrapped monellin were also studied. These studies indicated that the encapsulation of monellin into dry-aged monoliths caused the thermal unfolding transition to broaden and shift upward by 14°C, and causedthe long-term stability to improve by 12-fold (compared to solution). Chemical stability studies also showed a broader transition for the unfolding of the protein in dry-aged monoliths, and suggested that the protein was present in a distribution of environments. Results indicated that the entrapped proteins had a smaller range of conformational motions compared to proteins in solution, and that entrapped proteins were not able to unfold completely. The restriction of conformational motion, along with the increased structural order of the internal environment of the gels, likely resulted in the improvements in themial and long-term stability that were observed. A second protein which was also studied in this work is the metal binding protein rat oncomodulin. Initially, the unfolding behavior of this protein in aqueous solution was examined. Several single tryptophan mutants of the metal-binding protein rat oncomodulin (OM) were examined; F102W, Y57W, Y65W and the engineered protein CDOM33 which had all 12 residues of the CD loop replaced with a higher affinity binding loop. Both the thermal and the chemical stability were improved upon binding of metal ions with the order apo < Ca^^ < Tb^"^. During thermal denaturation, the transition midpoints (Tun) of Y65W appeared to be the lowest, followed by Y57W and F102W. The placement of the Trp residue in the F-helix in F102W apparently made the protein slightly more thermostable, although the fluorescence response was readily affected by chemical denaturants, which probably acted through the disruption of hydrogen bonds at the Cterminal end of the F-helix. Under both thermal and chemical denaturation, the engineered protein showed the highest stability. This indicated that increasing the number of metal ligating oxygens in the binding site, either by using a metal ion with a higher coordinatenumber (i.e. Tb^*) which binds more carboxylate ligands, or by providing more ligating groups, as in the CDOM33 replacement, produces notable improvements in protein stability. Y57W and CE)OM33 OM were chosen for further studies when encapsulated into sol-gel derived matrices. The kinetics of interaction of terbium with the entrapped proteins, the ability of the entrapped protein to binding terbium, as well as thermal stability of these two entrapped protein were compared with different levels of Ca^"*^ present in the matrix and in solution. Results suggested that for both of the proteins, the response time and the ability to bind terbium could be adjusted by adding excess calcium to the matrix before gelation. However, the less stable protein Y57W only retained at most 45% of its binding ability in solution while the more stable protein CDOM33 was able to retain 100% binding ability. Themially induced denaturation also suggested that CDOM33 showed similar stability to the protein in solution while Y57W was destabilized. All these results suggested that "hard" proteins (i.e. very stable) can easily survive the sol-gel encapsulation process, but "soft" proteins with lower thermodynamic stability may not be able to withstand the sol-gel process. However, it is possible to control many parameters in order to successfully entrap biological molecules into the sol-gel matrices with maxunum retention of activity.
Resumo:
This study investigated loss, death and dying, reminiscing, coping and the process of adaptation from the sUbjective perspective. A number of theories and models of death and dying were reviewed in the background literature search with the focus on reminiscing as a coping phenomenon. The format of the study was audio-taped interviews with ten sUbjects and the recording of their memories and reminiscing of life stories. The sUbjects were required to complete an initial questionnaire in a demographic data collection process. Two separate interviews consisted of a primary data collecting interview and a verification interview four to eight weeks later. An independent chart review completed the data collecting process. Data analysis was by the examination of the emerging themes in the subjects' personal narratives which revealed the sUb-categories of reminiscing, loss (including death and dying), acceptance, hope, love, despair and belief. Belief was shown to be the foundation and the base for living and reminiscing. Reminiscing was found to be a coping phenomenon, within the foundation of a belief system. Both living and reminiscing revealed the existence of a central belief or value with a great deal of importance attached to it. Whether the belief was of a spiritual nature, a value of marriage, tradition, a work ethic or belief in an abstract value such as fate,it gave support and control to the individuals' living and reminiscing process. That which caused despair or allowed acceptance indicated the sUbjects' basic belief and was identified in the story narrations. The findings were significant to health care in terms of education, increased dignity for the elderly and better understanding by society. The profiles represented an average age of 86.3 years with age showing no bearing on the life experiences associated with the emerging themes. Overwhelmingly, belief was shown to be the foundation in reminiscing. A Judeo-Christian cultural value base supported the belief in 90% of the sUbjects; however, different beliefs were clearly shown indicating that belief is central to all thinking beings, in everyday life and in reminiscing. Belief was not necessarily spiritual or a practised or verbalized religion. It was shown to be a way of understanding, a fundamental and single thread tying the individual's life and stories together. The benefits were the outcomes, in that knowledge of an individual's belief can optimize care planning for any age group, and/or setting. The strength of the study was the open question format and the feedback process of data verification. The unrestricted outcomes and non-specificity were significant in a world where dying is everybody's business.
Resumo:
The present research focused on the pathways through which the symptoms of posttraumatic stress disorder (PTSD) may negatively impact intimacy. Previous research has confirmed a link between self-reported PTSD symptoms and intimacy; however, a thorough examination of mediating paths, partner effects, and secondary traumatization has not yet been realized. With a sample of 297 heterosexual couples, intraindividual and dyadic models were developed to explain the relationships between PTSD symptoms and intimacy in the context of interdependence theory, attachment theory, and models of selfpreservation (e.g., fight-or-flight). The current study replicated the findings of others and has supported a process in which affective (alexithymia, negative affect, positive affect) and communication (demand-withdraw behaviour, self-concealment, and constructive communication) pathways mediate the intraindividual and dyadic relationships between PTSD symptoms and intimacy. Moreover, it also found that the PTSD symptoms of each partner were significantly related; however, this was only the case for those dyads in which the partners had disclosed most everything about their traumatic experiences. As such, secondary traumatization was supported. Finally, although the overall pattern of results suggest a total negative effect of PTSD symptoms on intimacy, a sex difference was evident such that the direct effect of the woman's PTSD symptoms were positively associated with both her and her partner's intimacy. I t is possible that the Tend-andBefriend model of threat response, wherein women are said to foster social bonds in the face of distress, may account for this sex difference. Overall, however, it is clear that PTSD symptoms were negatively associated with relationship quality and attention to this impact in the development of diagnostic criteria and treatment protocols is necessary.
Resumo:
This thesis describes two different approaches for the preparation of polynuclear clusters with interesting structural, magnetic and optical properties. Firstly, exploiting p-tert-butylcalix[4]arene (TBC4) macrocycles together with selected Ln(III) ions for the assembly of emissive single molecule magnets, and secondly the preparation and coordination of a chiral mpmH ligand with selected 3d transition metal ions, working towards the discovery of chiral polynuclear clusters. In Project 1, the coordination chemistry of the TBC4 macrocycle together with Dy(III) and Tb(III) afforded two Ln6[TBC4]2 complexes that have been structurally, magnetically and optically characterized. X-ray diffraction studies reveal that both complexes contain an octahedral core of Ln6 ions capped by two fully deprotonated TBC4 macrocycles. Although the unit cells of the two complexes are very similar, the coordination geometries of their Ln(III) ions are subtly different. Variable temperature ac magnetic susceptibility studies reveal that both complexes display single molecule magnet (SMM) behaviour in zero dc field and the energy barriers and associated pre-exponential factors for each relaxation process have been determined. Low temperature solid state photoluminescence studies reveal that both complexes are emissive; however, the f-f transitions within the Dy6 complex were masked by broad emissions from the TBC4 ligand. In contrast, the Tb(III) complex displayed green emission with the spectrum comprising four sharp bands corresponding to 5D4 → 7FJ transitions (where J = 3, 4, 5 and 6), highlighting that energy transfer from the TBC4 macrocycle to the Tb(III) ion is more effective than to Dy. Examples of zero field Tb(III) SMMs are scarce in the chemical literature and the Tb6[TBC4]2 complex represents the first example of a Tb(III) dual property SMM assembled from a p-tert-butylcalix[4]arene macrocycle with two magnetically derived energy barriers, Ueff of 79 and 63 K. In Project 2, the coordination of both enantiomers of the chiral ligand, α-methyl-2-pyridinemethanol (mpmH) to Ni(II) and Co(II) afforded three polynuclear clusters that have been structurally and magnetically characterized. The first complex, a Ni4 cluster of stoichiometry [Ni4(O2CCMe3)4(mpm)4]·H2O crystallizes in a distorted cubane topology that is well known in Ni(II) cluster chemistry. The final two Co(II) complexes crystallize as a linear mixed valence trimer with stoichiometry [Co3(mpm)6]·(ClO4)2, and a Co4 mixed valence complex [Co(II)¬2Co(III)2(NO3)2(μ-mpm)4(ONO2)2], whose structural topology resembles that of a defective double cubane. All three complexes crystallize in chiral space groups and circular dichroism experiments further confirm that the chirality of the ligand has been transferred to the respective coordination complex. Magnetic susceptibility studies reveal that for all three complexes, there are competing ferro- and antiferromagnetic exchange interactions. The [Co(II)¬2Co(III)2(NO3)2(μ-mpm)4(ONO2)2] complex represents the first example of a chiral mixed valence Co4 cluster with a defective double cubane topology.