193 resultados para Shuckard, William Edward,
em Brock University, Canada
Resumo:
The x-ray crystal structure of thiamine hydroiodide,C1ZH18N40S12' has been determined. The unit cell parameters are a = 13.84 ± 0.03, o b = 7.44 ± 0.01, c = 20.24 ± 0.02 A, 8 = 120.52 ± 0.07°, space group P2/c, z = 4. A total of 1445 reflections having ,2 > 2o(F2), 26 < 40° were collected on a Picker four-circle diffractometer with MoKa radiation by the 26 scan technique. The structure was solved by the heavy atom method. The iodine and sulphur atoms were refined anisotropically; only the positional parameters were refined for the hydrogen atoms. Successive least squares cycles yielded an unweighted R factor of 0.054. The site of protonation of the pyrimidine ring is the nitrogen opposite the amino group. The overall structure conforms very closely to the structures of other related thiamine compounds. The bonding surrounding the iodine atoms is distorted tetrahedral. The iodine atoms make several contacts with surrounding atoms most of them at or near the van der Waal's distances A thiaminium tetrachlorocobaltate salt was produced whose molecular and crystal structure was j~dged to be isomorphous to thiaminium tetrachlorocadmate.
Resumo:
Professor of Politics.
Resumo:
Bill Hogan was a student at Brock for two years. Among other things, he was editor in Chief of the Badger, now called The Press, and was involved in all things journalistic. His wife Pauline Hogan graduated from Brock in 1970 as well and both live and work in St Catharines. He is an antique dealer and she is a Theologian and has just earned her doctorate.
Resumo:
Bill Hogan was a student at Brock for two years. Among other things he was editor in Chief of the Badger, now "The Press", and was involved in all things journalistic. His wife Pauline Hogan graduated from Brock in 1970 as well and both live and work in St Catharines. He is an antique dealer and she is a Theologian and has just earned her doctorate.
Resumo:
Breeding parameters of Great Cormorants (PkaZac/iOCOfiCLX CCUibo dCUtbo) and Double-crested Cormorants (P. CLU/uXuA CMJhLtllb) were examined at two mixed species colonies at Cape Tryon and Durell Point, Prince Edward Island from 1976 to 1978. Differential access to nests at the two colony sites resulted in more complete demographic data for P. CCUibo than for P. CLUJiituA. In 1911j P. CCtfibo was present at both colonies by 21 March, whereas P. auAAJtuA did not return until 1 April and 16 April at Cape Tryon and Durell Point, respectively. Differences in the arrival chronology by individuals of each species and differences in the time of nest site occupation according to age, are suggested as factors influencing the nest site distribution of P. CXUtbo and P. aiVtituA at Cape Tryon. Forty-eight P. dOJtbo chicks banded at the Durell Point colony between 19 74 and 19 76 returned there to nest as two- to four-year olds in 19 77 and 19 78. Unmarked individuals with clutch-starts in April were likely greater than four years old as all marked two to four-year olds (with one possible exception) in 19 77 and 1978 had clutch-starts in May and June. Seasonal variation in the breeding success of P. dOJibo individuals was examined at Durell Point in 1977. Mean clutch-size, hatching success and fledging success exhibited a seasonal decline. Four- and 5-egg clutches represented the majority (75%) of all P. CCUibo clutches at Durell Point in 1977 and had the highest reproductive success (0.48 and 0.43 chicks fledged per egg laid respectively). Smaller clutches produced small broods with significantly higher chick mortality while larger clutches suffered high egg loss prior to clutch completion.
Resumo:
The endocrine pancreas of the rock bass (Ambloplites rupestris) was examined by light and electron microscopy. Two cell types with staining properties similar to mammalian A and B cells, and a third, non-staining cell type were found in the spherical pancreatic islets that were surrounded by a connective tissue capsule and embedded in two small masses of exocrine tissue. From an analysis of the ultrastructure of the A and B cells, a secretory cycle for each of these cell types was proposed. The secretory cycle of the A cell consisted of three well defined stages: (1) A cell production stage: during which A granule formation occurred in the sacs of the Golgi apparatus and the cell was characterized by the presence of numerous secretory granules, some elements of lamellar endoplasmic reticulum, and a homogeneously granular nucleus. The cytoplasm contained few distended cisternae, variable numbers of free ribosomes, microtubules and small vesicles. (2) A cell release stage: during which the release of A granules occurred and the cell usually contained several large distended cisternae and variable numbers of secretory granules. Granule release mechanisms included exocytosis, by which individual granules were released into the extracellular space after their membranes fused with the plasmalemma, and emiocytosis, by which one or more granules were released into a large cisterna whose membrane fused with the plasmalemma and formed a pore through which the cisternal contents passed out of the cell. (3) A cell reorganization stage: during which the changeover from the release stage to the production stage occurred and the reorganization of organelles and membrane structures took place. The cell contained few secretory granules and numerous small endoplasmic reticular cisternae. The cytoplasm exhibited less electron density than either of the other two stages. The A granule after formation underwent a series of morphological changes which were described in four numerically identified phases. The secretory cycle of the B cell consisred of two stages: (1) B cell production stage: during which the B granule formation occurred in the sacs of the Go1gi apparatus. The cell was characterized by an irregular outline, the presence of numerous secretory granules, and an irregularly shaped nucleus which contained variable amounts of clumped chromatin. The cytoplasm contained moderate amounts of lamellar endoplasmic reticulum studded with ribosomes, several small vesicles, and an active Go1gi apparatus. (2) B cell release stage: during which the release of B granules occurred. The cell contained a rounded nucleus with dispersed chromatin, several distended endoplasmic reticular cisternae and a variable number of secretory granules. Granule release occu~ by emiocytosis and exocytosis similar to that found for the A cell.
Resumo:
Verse.
Resumo:
The correspondence is dated October 19, 1918 and December 17, 1918. Amacy Matthews was the treasurer for the Township of Crowland. The correspondence is from J.W. [John Wells] Marshall, the county school inspector and relates to payments to be made to each teacher listed in the correspondence. Each letter includes the signature of the teacher acknowledging receipt of the funds. Teachers listed are Orlin McKenney, Edward Farr, Leonard Matthews, Charles Terreberry, Hiram Pratt, William VanAlstine, Grant Jenkinson and Harry Terreberry.
Resumo:
The correspondence from D.W. [David William] Smith to President Peter Russell regarding Smith’s desire to sell a certain piece of property in Newark (now Niagara-on-the-Lake, Ont.) to be used as a location for a common grammar school. The notice gives a description of the building situated on the property as being adaptable for the use of a school. The Board of Survey convened in December 1798 to examine Smith’s property and gave an appropriate valuation of the properties and buildings Smith was offering for sale. Smith was the deputy surveyor general of lands for Upper Canada.
Resumo:
Edward Mirynech joined the faculty at Brock University in 1964 as assistant professor of Geology. Edward Mirynech, the son of John and Katherine Mirynech, grew up in St. Catharines, attended Connaught Public School and received his formal education at the University of Toronto. Dr. Mirynech played several critical roles in the early development of the University. In addition to teaching, Dr. Mirynech was also the acting director of the athletics department, a coach for many of the early rowing, hockey and basketball teams and served the University as marshall for the sod turning ceremony for the new DeCew campus in 1965. Dr. Mirynech was instrumental in the founding of the physical education, geography and geological sciences programs. He served as acting chairman in 1968 when the department of geological sciences enrolled its first students. Part of the unique teaching program was the annual field trips to locations such as the Belleville area, extended summer teaching programs held in Trinidad-Tobago and the following year in Iceland. In 1972, the first graduation ceremony ever to be held in the Arctic, at Pond Inlet, NWT, made national news. Three geology students, on a study trip to the Arctic, received their degrees during a special ceremony. Dr. Mirynech was among the faculty team in Pond Inlet, NWT, representing Brock University. Dr. Mirynech retired from teaching in 1985, and passed away in 2004.
Resumo:
‘The Father of Canadian Transportation’ is a term commonly associated with William Hamilton Merritt. Although he is most known for being one of the driving forces behind the building of the first Welland Canal, he was many things throughout his life; a soldier, merchant, promoter, entrepreneur and politician to name a few. Born on July 3, 1793 at Bedford, Westchester County, N.Y. to Thomas Merritt and Mary Hamilton, Merritt’s family relocated to Canada shortly after in 1796. The move came after Merritt’s father petitioned John Graves Simcoe for land in Upper Canada after serving under him in the Queen’s Rangers during the American Revolution. The family quickly settled into their life at Twelve Mile Creek in St. Catharines. Merritt’s father became sheriff of Lincoln County in 1803 while Merritt began his education in mathematics and surveying. After some brief travel and further education Merritt returned to Lincoln County, in 1809 to help farm his father’s land and open a general store. While a farmer and merchant, Merritt turned his attention to military endeavours. A short time after being commissioned as a Lieutenant in the Lincoln militia, the War of 1812 broke out. Fulfilling his duty, Merritt fought in the Battle of Queenston Heights in October of 1812, and numerous small battles until the Battle of Lundy’s Lane in July 1814. It was here that Merritt was captured and held in Cheshire, Massachusetts until the war ended. Arriving back in the St. Catharines area upon his release, Merritt returned to being a merchant, as well as becoming a surveyor and mill owner. Some historians hypothesize that the need to draw water to his mill was how the idea of the Welland Canals was born. Beginning with a plan to connect the Welland River with the Twelve mile creek quickly developed into a connection between the Lakes Erie and Ontario. Its main purpose was to improve the St. Lawrence transportation system and provide a convenient way to transport goods without having to go through the Niagara Falls portage. The plan was set in motion in 1818, but most living in Queenston and Niagara were not happy with it as it would drive business away from them. Along with the opposition came financial and political restraints. Despite these factors Merritt pushed on and the Welland Canal Company was chartered by the Upper Canadian Assembly on January 19, 1824. The first sod was turned on November 30, 1824 almost a year after the initial chartering. Many difficulties arose during the building of the canal including financial, physical, and geographic restrictions. Despite the difficulties two schooners passed through the canal on November 30, 1829. Throughout the next four years continual work was done on the canal as it expended and was modified to better accommodate large ships. After his canal was underway Merritt took a more active role in the political arena, where he served in various positions throughout Upper Canada. In 1851, Merritt withdrew from the Executive Council for numerous reasons, one of which being that pubic interest had diverted from the canals to railways. Merritt tried his hand at other public works outside transportation and trade. He looked into building a lunatic asylum, worked on behalf of War of 1812 veterans, aided in building Brock’s monument, established schools, aided refugee slaves from the U.S. and tried to establish a National Archives among many other feats. He was described by some as having “policy too liberal – conceptions too vast – views too comprehensive to be comprehensible by all”, but he still made a great difference in the society in which he lived. After his great contributions, Merritt died aboard a ship in the Cornwall canal on July 5, 1862. Dictionary of Canadian Biography Online http://www.biographi.ca/EN/ShowBio.asp?BioId=38719 retrieved October 2006 Today numerous groups carry on the legacy of Merritt and the canals both in the past and present. One such group is the Welland Canals Foundation. They describe themselves as: “. . . a volunteer organization which strives to promote the importance of the present and past Welland Canals, and to preserve their history and heritage. The Foundation began in 1980 and carries on events like William Hamilton Merritt Day. The group has strongly supported the Welland Canals Parkway initiative and numerous other activities”. The Welland Canals Foundation does not work alone. They have help from other local groups such as the St. Catharines Historical Society. The Society’s main objective is to increase knowledge and appreciation of the historical aspects of St. Catharines and vicinity, such as the Welland Canals. http://www.niagara.com/~dmdorey/hssc/dec2000.html - retrieved Oct. 2006 http://www.niagara.com/~dmdorey/hssc/feb2000.html - retrieved Oct. 2006
Resumo:
David Skene-Melvin, literary historian and bibliographer, donated his extensive collection of books on Crime, Mystery and Detective fiction to the Popular Culture Program at Brock University in July 2001. The donation forms a significant part of the Skene-Melvin Collection of Crime, Mystery and Detective Fiction, James A. Gibson Library, Brock University.
Resumo:
William Van Every, son of McGregory and Mary Wilcox (Jaycocks) Van Every, was born in New York state in 1765. During the Revolutionary War he joined Butler’s Rangers and served under Captain John McDonnell. He was granted three lots of land in the Township of Niagara, with additional lands granted at later dates. William married Elizabeth, daughter of George Young. Elizabeth was the widow of Col. Frederick Dochstader and mother of Catherine Dochstader, b. 1781. William Van Every died in 1832, his wife Elizabeth in 1851. Both are buried in the Warner Cemetery, in present day Niagara Falls. The children of William Van Every and Elizabeth Young were Mary, Elizabeth, Phoebe, John, Peter, William, Rebecca, Samuel and Joseph. Source: Mary Blackadar Piersol, The Records of the Van Every Family, Toronto : Best Printing, 1947. And, Patricia M. Orr, Historic Woodend, sponsored by Niagara Peninsula Conservation Authority, 1980?