6 resultados para Shell-and-tube heat exchanger
em Brock University, Canada
Resumo:
A new series of nano-sized Ce1-xEuxCrO3 (x = 0.0 to 1.0) with an average particle size of 50 - 80 nm were synthesized using a solution combustion method. Nano-powders Ce1-xEuxCrO3 with the canted antiferromagnetic property exhibited interesting magnetic behaviours including the reversal magnetization and the exchange bias effect. The effect of europium doping as the ion with the smaller radius size and different electron con figuration on structural, magnetic and thermal properties of Ce1-xEuxCrO3 were investigated using various experimental techniques, i.e. DC/AC magnetic susceptibility, heat capacity, thermal expansion, Raman scattering, X-ray photoemission spectroscopy, transmission/scanning electron microscopy, X-ray powder diffraction and neutron scattering. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples confirmed the existence of the spin disorder magnetic phase in Ce1-xEuxCrO3 compounds. The exchange bias phenomenon, which is assigned to the exchange coupling between glassy-like shell and canted antiferromagnetic core, showed the opposite sign in CeCrO3 and EuCrO3 at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. The energy level excitation of samples were examined by an inelastic neutron scattering which was in good agreement with the heat capacity data. Neutron scattering analysis of EuCrO3 was challenging due to the large neutron absorption cross-section of europium. All diffraction patterns of Ce1-xEuxCrO3 showed the magnetic peak attributed to the antiferromagnetic Cr3+ spins while none of the diffraction patterns could detect the magnetic ordering of the rare-earth ions in these samples.
Resumo:
. The influence of vine water status was studied in commercial vineyard blocks of Vilis vinifera L. cv. Cabernet Franc in Niagara Peninsula, Ontario from 2005 to 2007. Vine performance, fruit composition and vine size of non-irrigated grapevines were compared within ten vineyard blocks containing different soil and vine water status. Results showed that within each vineyard block water status zones could be identified on GIS-generated maps using leaf water potential and soil moisture measurements. Some yield and fruit composition variables correlated with the intensity of vine water status. Chemical and descriptive sensory analysis was performed on nine (2005) and eight (2006) pairs of experimental wines to illustrate differences between wines made from high and low water status winegrapes at each vineyard block. Twelve trained judges evaluated six aroma and flavor (red fruit, black cherry, black current, black pepper, bell pepper, and green bean), thr~e mouthfeel (astringency, bitterness and acidity) sensory attributes as well as color intensity. Each pair of high and low water status wine was compared using t-test. In 2005, low water status (L WS) wines from Buis, Harbour Estate, Henry of Pelham (HOP), and Vieni had higher color intensity; those form Chateau des Charmes (CDC) had high black cherry flavor; those at RiefEstates were high in red fruit flavor and at those from George site was high in red fruit aroma. In 2006, low water status (L WS) wines from George, Cave Spring and Morrison sites were high in color intensity. L WS wines from CDC, George and Morrison were more intense in black cherry aroma; LWS wines from Hernder site were high in red fruit aroma and flavor. No significant differences were found from one year to the next between the wines produced from the same vineyard, indicating that the attributes of these wines were maintained almost constant despite markedly different conditions in 2005 and 2006 vintages. Partial ii Least Square (PLS) analysis showed that leaf \}' was associated with red fruit aroma and flavor, berry and wine color intensity, total phenols, Brix and anthocyanins while soil moisture was explained with acidity, green bean aroma and flavor as well as bell pepper aroma and flavor. In another study chemical and descriptive sensory analysis was conducted on nine (2005) and eight (2006) medium water status (MWS) experimental wines to illustrate differences that might support the sub-appellation system in Niagara. The judges evaluated the same aroma, flavor, and mouthfeel sensory attributes as well as color intensity. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA) and discriminate analysis (DA). ANOV A of sensory data showed regional differences for all sensory attributes. In 2005, wines from CDC, HOP, and Hemder sites showed highest. r ed fruit aroma and flavor. Lakeshore and Niagara River sites (Harbour, Reif, George, and Buis) wines showed higher bell pepper and green bean aroma and flavor due to proximity to the large bodies of water and less heat unit accumulation. In 2006, all sensory attributes except black pepper aroma were different. PCA revealed that wines from HOP and CDC sites were higher in red fruit, black currant and black cherry aroma and flavor as well as black pepper flavor, while wines from Hemder, Morrison and George sites were high in green bean aroma and flavor. ANOV A of chemical data in 2005 indicated that hue, color intensity, and titratable acidity (TA) were different across the sites, while in 2006, hue, color intensity and ethanol were different across the sites. These data indicate that there is the likelihood of substantial chemical and sensory differences between clusters of sub-appellations within the Niagara Peninsula iii
Resumo:
Although reductions in cerebral blood flow (CBF) may be implicated in the development of central fatigue during environmental stress, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has yet to be isolated. The current research program examined the influence of CBF, with and without consequent hypocapnia, on neuromuscular responses during hypoxia and passive heat stress. To this end, neuromuscular responses, as indicated by motor evoked potentials (MEP), maximal M-wave (Mmax) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in three separate projects: 1) hypocapnia, independent of concomitant reductions in CBF; 2) altered CBF during severe hypoxia and; 3) thermal hyperpnea-mediated reductions in CBF, independent of hypocapnia. All projects employed a custom-built dynamic end-tidal forcing system to control end-tidal PCO2 (PETCO2), independent of the prevailing environmental conditions, and cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg·Kg-1) to selectively reduce CBF (estimated using transcranial Doppler ultrasound) without changes in PETCO2. A primary finding of the present research program is that the excitability of the corticospinal tract is inherently sensitive to changes in PaCO2, as demonstrated by a 12% increase in MEP amplitude in response to moderate hypocapnia. Conversely, CBF mediated reductions in cerebral O2 delivery appear to decrease corticospinal excitability, as indicated by a 51-64% and 4% decrease in MEP amplitude in response to hypoxia and passive heat stress, respectively. The collective evidence from this research program suggests that impaired voluntary activation is associated with reductions in CBF; however, it must be noted that changes in cVA were not linearly correlated with changes in CBF. Therefore, other factors independent of CBF, such as increased perception of effort, distress or discomfort, may have contributed to the reductions in cVA. Despite the functional association between reductions in CBF and hypocapnia, both variables have distinct and independent influence on the neuromuscular system. Therefore, future studies should control or acknowledge the separate mechanistic influence of these two factors.
Resumo:
Lemna minor is a small aquatic polyploid angiosperm which reproduces apomictically and has a worldwide distribution. This study was vmdertaken to characterize the extent and nature of phenotypic variability. The techniques of starch gel electrophoresis were used in this investigation and. MDH phenotypes of several populations from Ontario, USA and Africa were examined and compared. Heat stability, molecular weight and cell fractionation analyses were also done to identify locus specific MDH bands. The results of the population surveys suggest that there is little genetic variability present both within and between Lemna minor/Lemna turionifera . Evidence of correlation of physiological and seasonal variation patterns was found.
Resumo:
Passive solar building design is the process of designing a building while considering sunlight exposure for receiving heat in winter and rejecting heat in summer. The main goal of a passive solar building design is to remove or reduce the need of mechanical and electrical systems for cooling and heating, and therefore saving energy costs and reducing environmental impact. This research will use evolutionary computation to design passive solar buildings. Evolutionary design is used in many research projects to build 3D models for structures automatically. In this research, we use a mixture of split grammar and string-rewriting for generating new 3D structures. To evaluate energy costs, the EnergyPlus system is used. This is a comprehensive building energy simulation system, which will be used alongside the genetic programming system. In addition, genetic programming will also consider other design and geometry characteristics of the building as search objectives, for example, window placement, building shape, size, and complexity. In passive solar designs, reducing energy that is needed for cooling and heating are two objectives of interest. Experiments show that smaller buildings with no windows and skylights are the most energy efficient models. Window heat gain is another objective used to encourage models to have windows. In addition, window and volume based objectives are tried. To examine the impact of environment on designs, experiments are run on five different geographic locations. Also, both single floor models and multi-floor models are examined in this research. According to the experiments, solutions from the experiments were consistent with respect to materials, sizes, and appearance, and satisfied problem constraints in all instances.
Resumo:
Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modeling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment.