7 resultados para Sharpening stones
em Brock University, Canada
Resumo:
Bank stabilization structures are used to prevent the loss of valuable land within the urban environment and the decision for the type of structure used depends on the properties of the stream. In the urban areas of Southern Ontario there is a preference for the use of armourstone blocks as bank stabilization. The armourstone revetment is a free standing stone structure with large blocks of stone layered vertically and offset from one another. During fieldwork at Forty Mile Creek in Grimsby, Ontario armourstone failure was identified by the removal of two stones within one column from the wall. Since the footer stones were still in place, toe scour was eliminated as a cause of failure. Through theoretical, field, and experimental work the process of suction has been identified as a mode of failure for the armourstone wall and the process of suction works similarly to quarrying large blocks of rock off bedrock streambeds. The theory of lateral suction has previously not been taken into consideration for the design of these walls. The physical and hydraulic evidence found in the field and studied during experimental work indicate that the armourstone wall is vulnerable to the process of suction. The forces exerted by the flow and the resistance of the block determine the stability of the armourstone block within the wall. The design of the armourstone wall, high surface velocities, and short pulses of faster flowing water within the profile could contribute to armourstone failure by providing the forces needed for suction to occur, therefore adjustments to the design of the wall should be made in order to limit the effect.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the Grantham Township between the Town of St. Catharines and Merritton. Identified structures associated with the Canal include Locks 8, 9, and 10, waste weirs, the towing path, and several floating bridges. The surveyors' measurements and notes can be seen in red and black ink and pencil. Several stones and tree stumps likely used in the measurements are identified on the map. Local area landmarks are also identified and include streets and roads(ex. Macadamized Road to Thorold), J. Hamilton's Hotel, a school house, McCoy's Farm House, Bradley's House, O. Phelps Saw Mill, Disher and Hait's Woolen Mill, Centreville Mills, a bridge, several barns, and a number of structures (possibly houses, cabins, or shops) belonging to: P. McCoy, E. McLachlan, T. Wilson, W. Wilson, M. Bradley, S. Bradley, P. Boyle, J. Bradley, E. Grant, and W. Church. Lock 12 and 15 of the original canal are also identified. Properties and property owners of note are: Concession 8 Lots 12, 13 and 14, O. J. Phelps, P. McCoy, A. Bradley, C. Bradley, T. Reed, O. Clifford, J. Bradley, W. C. Loan Company, Duffin, and T. Towers Mill Lot.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the Grantham Township along the outskirts of Merritton. Identified structures associated with the Canal include Locks 11, 12, 13, 14, and 15, Lock House Lot, and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Several stones likely used in the measurements are identified on the map. Local area landmarks are also identified and include streets and roads(ex. Hartzel Road and Macadamized Road), the Great Western Railroad, Swing Bridge, Thorold Station and its structures (ex. freight house, office, water tank, and wood house), Gordon and Mackay Houses, Gordon and Mackay's Cotton Mill, hydraulic race, a wharf, pond, and an unnamed bridge. Properties and property owners of note are: Concession 9 Lots 12 and 13, A. Bradley, John O'Coner, G. Grant, J. Bradley, J. Vanderburgh, O. Clifford and a parcel of land leased Gordon and Mackay.
Resumo:
The primary purpose of this study was to investigate the effect of skate blade shape on skating performance. A secondary purpose was to evaluate if a change in hollow shape can create additional effects on skating performance. Thirty-seven male ice hockey players (age=18 years, SD=3.4) participated. The intervention consisted of four sharpening trials assessed using three on-ice tests. Participant feedback was also assessed using a Likert scale questionnaire. Statistical analysis included within-subject repeated measures MANOVA of trial by skating variables (p≤0.05). Results revealed Contour 1 enhanced performance compared to baseline on six variables at varsity level and five variables at midget level. Contour 1 enhanced performance compared to Contour 2 on six variables at the varsity and midget levels. Contour 1 also scored highest on the feedback questionnaire. Findings of this study indicate that contouring is a necessary practice to achieve optimal skating performance.
Resumo:
Copies (these items were copied from the internet) of Samuel DeVeaux's attestation paper, casualty details and a copy of a photo of Wailly Orchard Cemetery in which the old wooden crosses have been replaced by stones.
Resumo:
Receipts from the Park Lawn Cemetery Co. Ltd., Bloor St. West, Toronto. Receipt no. 851 for payment in full for a Lot no.91 in section H received from Percy C. Bands [Band]. Receipt no. 852 for payment for corner stones for Lot no.91 in section H received from Percy C. Bands [Band]. The unnumbered receipt is for opening an adult grave for Sarah Lawrence. Payment was received from Percy C. Bands [Band], Feb. 23, 1926.
Resumo:
The purpose of the study was to investigate the relative contribution of skate blade properties to on-ice skating speed. Thirty-two male ice hockey players (mean age = 19±2.65 yrs.) representing the Ontario Minor Hockey Association (OMHA; Midget AAA and Junior), Canadian Inter University Sport (CIS: Varsity), Ontario hockey league (OHL) and East Coast Hockey League (ECHL), and the playing positions of forwards (n=18) and defense (n=14) were recruited to participate. Skate related equipment worn by the players for the purpose of the research was documented and revealed that 80% of the players wore Bauer skates, Tuuk blade holders and LS2 skate blades. Subjects completed a battery of eight on-ice skating drills used to measure and compare two aspects of skating speed; acceleration [T1(s)] and total time to complete each drill [TT(s)] while skating on three skate blade conditions. The drills represented skills used in the game of hockey, both in isolation (e.g., forward skating, backward skating, stops and starts, and cornering) and in sequence to simulate the combination of skills used in a shift of game play. The three blade conditions consisted of (i) baseline, represented by the blades worn by the player throughout their current season of play; (ii) experimental blades (EB), represented by brand name experimental blades with manufacturers radius of contour and a standardized radius of hollow; and (iii) customized experimental blades (CEB), represented by the same brand name experimental blades sharpened to the players’ preference as identified in the baseline condition. No significant differences were found in acceleration time [T1(s)] or total time to complete [TT(s)] the isolated drills across blade conditions; however significant differences were revealed in both T1(s) and TT(s) measured during the execution of the sequenced drill across blade conditions. A iii Bonferroni post hoc test revealed that players skated significantly faster when skating on the CEB condition compared to the baseline condition (p≤.05). A questionnaire assessing subjects perceived comfort, confidence and effort expended while skating on the experimental blades revealed that players were significantly more comfortable when skating on the CEB versus the EB condition (p≤.05). Outcomes of the study provide evidence to suggest that the experimental skate blades customized with the players preferred blade sharpening characteristics results in faster skating speed in a combination drill representing skills performed in gameplay.