2 resultados para Serum Amyloid A Protein
em Brock University, Canada
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
Globally, Prostate cancer (PCa) is the most frequently occurring non-cutaneous cancer, and is the second highest cause of cancer mortality in men. Serum prostate specific antigen (PSA) has been the standard in PCa screening since its approval by the American Food & Drug Administration (FDA) in 1994. Currently, PSA is used as an indicator for PCa - patients with a serum PSA level above 4ng/mL will often undergo prostate biopsy to confirm cancer. Unfortunately fewer than similar to 30% of these men will biopsy positive for cancer, meaning that the majority of men undergo invasive biopsy with little benefit. Despite PSA's notoriously poor specificity (33%), there is still a significant lack of credible alternatives. Therefore an ideal biomarker that can specifically detect PCa at an early stage is urgently required. The aim of this study was to investigate the potential of using deregulation of urinary proteins in order to detect Prostate Cancer (PCa) among Benign Prostatic Hyperplasia (BPH). To identify the protein signatures specific for PCa, protein expression profiling of 8 PCa patients, 12 BPH patients and 10 healthy males was carried out using LC-MS/MS. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR. This approach revealed that significant the down-regulation of Fibronectin and TP53INP2 was a characteristic event among PCa patients. Fibronectin mRNA down-regulation, was identified as offering improved specificity (50%) over PSA, albeit with a slightly lower although still acceptable sensitivity (75%) for detecting PCa. As for TP53INP2 on the other hand, its down-regulation was moderately sensitive (75%), identifying many patients with PCa, but was entirely non-specific (7%), designating many of the benign samples as malignant and being unable to accurately identify more than one negative.