7 resultados para Sensitivities
em Brock University, Canada
Resumo:
The effects of metiram (Polyram 80 DF) on the growth of Venturia inaequalis, cause of apple scab, and the degradation of metiram were examined in culture media. Samples of V. inaequalis conidia were collected from nine orchards in 1998 and six orchards in 1999 and tested for sensitivity. Samples were plated on water agar amended with metiram or mancozeb. Mean EC50 values (effective concentration of fungicide required to inhibit germination of half the conidia) for each population were calculated. The mean EC50 values for metiram ranged from 0.26 - 1.20 ^ig metiram a.i./ml, with differences (Student Newman Keul's Test (SNK), a=0.05) between populations. EC50 values for mancozeb ranged from 0.06 - 0.58 which were also different (SNK, a=0.05). Five of these populations were examined for mycelial growth sensitivity to metiram by testing 30 monoconidial isolates from each population on metiram amended potato dextrose agar. Mean EC50 values for populations were calculated and ranged from 3.44-5.94 |ig metiram/ml, and showed differences (Friedman Test, a=0.05). As the EC50 values obtained are far less than the concentrations applied in the field, results indicate that Ontario populations of V. inaequalis are still sensitive to metiram and mancozeb. The stability of metiram in PDA at 22°C was studied over a 10-day period. The initial concentration of metiram decreased by approximately 50% within the first day, and continued to decline slowly, to approximately 20% of the initial concentration. The factors possibly affecting initial metiram degradation, including agar, heat, and the use of glass or polystyrene Petri dish composition were examined. The effects from the polystyrene in the Petri dish composition were negligible, however more studies must be done to examine metiram degradation during the first 24 hours of preparation.
Resumo:
Pancreatic deoxyribonuclease preferentially digests active genes during all phases of the cell cycle including mitosis. Recently, a DNAse I-directed in ~ nick translation technique has been used to demonstrate differences in the DNAse I sensitivity of euchromatic and heterochromatic regions of mitotic chromosomes. This ill ~ technique has been used in this study to ask whether facultative heterochromatin of the inactive X chromosome can be distinguished from the active X chromosome in mouse and human tissues. In addition to this, in ~ nick translation has been used to distinguish constitutive heterochromatin in mouse and human mitotic chromosomes. Based on relative levels of DNAse I sensitivity, the inactive X chromosome could not be distinguished from the active X chromosome in either mouse or human tissues but regions of constitutive heterochromatin could be distinguished by their relative DNAse I insensitivity. The use of !D situ nick translation was also applied to tissue sections of 7.5 day mouse embryos to ask whether differing levels of DNAse I sensitivity could be detected between different tissue types. Differences in DNAse I sensitivities were detected in three tissues examined; embryonic ectoderm, an embryo-derived tissue, and two extraembryonic tissues, extraembryonic ectoderm and ectoplacental cone. Embryonic ectoderm and extraembryonic ectoderm nuclei possessed comparable levels of DNAse I sensitivity while ectoplacental cone was significantly less DNAse I sensitive. This suggests that tissue-specific mechanisms such as chromatin structure may be involved in the regulation of gene activity in certain tissue types. This may also shed some light on possible tissue specific mechanisms regulating X chromosome activity in the developing mouse embryo.
Resumo:
The Beckman Helium Discharge Detector has been found to be sensitive to the fixed gases oxygen, nitrogen, and hydrogen at detection levels 10-100 times more sensitive than possible with a Bow-Mac Thermal Conductivity Detector. Detection levels o~ approximately 1.9 E-4 ~ v/v oxygen, 3.1 E-4 ~ v/v nitrogen, and 3.0 E-3 ~ v/v hydrogen are estimated. Response of the Helium Discharge Detector was not linear, but is useable for quantitation over limited ranges of concentration using suitably prepared working standards. Cleanliness of the detector discharge electrodes and purity of the helium carrier and discharge gas were found to be critical to the operation of the detector. Higher sensitivities of the Helium Discharge Detector may be possible by the design and installation of a sensitive, solid-state electrometer.
Resumo:
Basal body temperature (BBT) and thermoeffector thresholds increase following ovulation in
many women. This study investigated if solely central thermoregulatory alterations are responsible.
Seven females in a non-contraceptive group (NCG) were compared with 5 monophasic contraceptive
users (HCG) on separate accounts: pre-ovulation (Trial I; d 2-5) and post-ovulation (Trial 2; 4-8 d
post-positive ovulation) for NCG, and active phase for HCG (d 2-5, d 18-21). During immersion in
28°C water to the axilla, participants exercised for 20-30 min on an underwater ergometer. After
steadily sweating, immersion continued until metabolism increased two-fold due to shivering. Rectal
(Tre) BBT was not different between trials for neither NCG (1: 37.34±0.16°C; 2: 37.35±0.27°C) nor
HCG. At exercise termination, Tre forehead sweating cessation increased (P<0.05) in trial 2
irrespective of group (1: 37.55±0.39°C; 2: 37.90±0,46°C). Tre shivering onset did not increase
(P>0.05) in trial 2 (1: 36.91±0.50°C; 2: 37.07±0,45°C). The widths of the interthreshold zone
increased (P<0.05) in trial 2 (1: 0.64±0.22°C; 2: 0.82±0.37°C) due to the increased sweating threshold
only. HCG cooled quicker (1: -l.15±0,43°C; 2: -1.00±0.50°C) than NCG participants (1: -
0.58±0.22°C; 2: -0.52±O.29°C), and tympanic (Tty) sweat thresholds were significantly (P<0.05)
decreased (1: 34.76±0.54°C; 2: 35.39±0.61°C) versus NCG (l: 35.57±0.77°C; 2: 35.89±1.04°C).
Lastly, Tre and Tty thresholds were significantly different (P
Resumo:
Hepatocellular Carcinoma (HCC) is a major healthcare problem, representing the third most common cause of cancer-related mortality worldwide. Chronic infections with Hepatitis B virus (HBV) and/or Hepatitis C virus (HCV) are the major risk factors for the development of HCC. The incidence of HBV -associated HCC is in decline as a result of an effective HBV vaccine; however, since an equally effective HCV vaccine has not yet been developed, there are 130 million HCV infected patients worldwide who are at a high-risk for developing HCC. Because reliable parameters and/or tools for the early detection of HCC among high-risk individuals are severely lacking, HCC patients are always diagnosed at a late stage where surgical solutions or effective treatment are not possible. Using urine as a non-invasive sample source, two different approaches (proteomic-based and genomic-based approaches) were pursued with the common goal of discovering potential biomarker candidates for the early detection of HCC among high-risk chronic HCV infected patients. Urine was collected from 106 HCV infected Egyptian patients, 32 of whom had already developed HCC and 74 patients who were diagnosed as HCC-free at the time of initial sample collection. In addition to these patients, urine samples were also collected from 12 healthy control individuals. Total urinary proteins, Trans-renal nucleic acid (Tr-NA) and microRNA (miRNA) were isolated from urine using novel methodologies and silicon carbide-loaded spin columns. In the first, "proteomic-based", approach, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to identify potential candidates from pooled urine samples. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR (qRT-PCR). This approach revealed that significant over-expression of three proteins: DJ-1, Chromatin Assembly Factor-1 (CAF-1) and 11 Moemen Abdalla HCC Biomarkers Heat Shock Protein 60 (HSP60), were characteristic events among HCC-post HCV infected patients. As a single-based HCC biomarker, CAF-1 over-expression identified HCC among HCV infected patients with a specificity of 90%, sensitivity of 66% and with an overall diagnostic accuracy of 78%. Moreover, the CAF-lIHSP60 tandem identified HCC among HCV infected patients with a specificity of 92%, sensitivity of 61 % and with an overall diagnostic accuracy of 77%. In the second genomic-based approach, two different approaches were processed. The first approach was the miRNA-based approach. The expression levels of miRNAs isolated from urine were studied using the Illumina MicroRNA Expression Profiling Assay. This was followed by qRT-PCR-based validation of deregulated expression of identified miRNA candidates among all the patients. This approach shed the light on the deregulated expression of a number of miRNAs, which may have a role in either the development of HCC among HCV infected patients (i.e. miR-640, miR-765, miR-200a, miR-521 and miR-520) or may allow for a better understanding of the viral-host interaction (miR-152, miR-486, miR-219, miR452, miR-425, miR-154 and miR-31). Moreover, the deregulated expression of both miR-618 and miR-650 appeared to be a common event among HCC-post HCV infected patients. The results of the search for putative targets of these two miRNA suggested that miR-618 may be a potent oncogene, as it targets the tumor-suppressor gene Low density lipoprotein-related protein 12 (LPR12), while miR-650 may be a potent tumor-suppressor gene, as it is supposed to downregulate the TNF receptor-associated factor-4 (TRAF4) oncogene. The specificity of miR-618 and miR-650 deregulated expression patterns for the early detection of HCC among HCV infected patients was 68% and 58%, respectively, whereas the sensitivity was 64% and 72%, respectively. When the deregulated expression of both miRNAs was combined as a tandem biomarker, the specificity and the sensitivity were 75% and 58% respectively. 111 Moemen Abdalla HCC Biomarkers In the second, "Trans-renal nucleic acid-based", approach, the urinary apoptotic nucleic acid (uaNA) levels of 70ng/mL or more were found to be a good predictor of HCC among chronic HCV infected patients. The specificity and the sensitivity of this diagnostic approach were 76% and 86%, respectively, with an overall diagnostic value of 81 %. The uaNA levels positively correlated to HCC disease progression as monitored by epigenetic changes of a panel of eight tumor-suppressor genes (TSGs) using methylation-sensitive PCR. Moreover, the pairing of high uaNA levels (:::: 70 ng/mL) and CAF-1 over-expreSSIOn produced a highly specific (l 00%) multiple-based HCC biomarker with an acceptable sensitivity of 64%, and with a diagnostic accuracy of 82%. In comparison to the previous pairing, the uaNA levels (:::: 70 ng/mL) in tandem with HSP60 over-expression was less specific (89%) but highly sensitive (72%), resulting in a diagnostic accuracy of 64%. The specificities of miR-650 deregulated expression in combination with either high uaNA content or HSP 60 over-expression were 82% and 79%, respectively, whereas, the sensitivities of these combinations were 64% and 58%, respectively. The potential biomarkers identified in this study compare favorably with the diagnostic accuracy of the a-fetoprotein levels test, which has a specificity of 75%, sensitivity of 68% and an overall diagnostic accuracy of 70%. Here we present an intriguing study which shows the significance of using urine as a noninvasive sample source for the identification of promising HCC biomarkers. We have also introduced new techniques for the isolation of different urinary macromolecules, especially miRNA, from urine. Furthermore, we strongly recommend the potential biomarkers indentified in this study as focal points of any future research on HCC diagnosis. A larger testing pool will determine if their use is practical for mass population screening. This explorative study identified potential targets that merit further investigation for the development of diagnostically accurate biomarkers isolated from 1-2 mL urine samples that were acquired in a non-invasive manner.
Resumo:
The primary objective of this research project was to identify prostate cancer (PCa) -specific biomarkers from urine. This was done using a multi-faceted approach that targeted (1) the genome (DNA); (2) the transcriptome (mRNA and miRNA); and (3) the proteome. Toward this end, urine samples were collected from ten healthy individuals, eight men with PCa and twelve men with enlarged, non-cancerous prostates or with Benign Prostatic Hyperplasia (BPH). Urine samples were also collected from the same patients (PCa and BPH) as part of a two-year follow-up. Initially urinary nucleic acids and proteins were assessed both qualitatively and quantitatively for characteristics either unique or common among the groups. Subsequently macromolecules were pooled within each group and assessed for either protein composition via LC-MS/MS or microRNA (miRNA) expression by microarray. A number of potential candidates including miRNAs were identified as being deregulated in either pooled PCa or BPH with respect to the healthy control group. Candidate biomarkers were then assessed among individual samples to validate their utility in diagnosing PCa and/or differentiating PCa from BPH. A number of potential targets including deregulation of miRNAs 1825 and 484, and mRNAs for Fibronectin and Tumor Protein 53 Inducible Nuclear Protein 2 (TP53INP2) appeared to be indicative of PCa. Furthermore, deregulation of miR-498 appeared to be indicative of BPH. The sensitivities and specificities associated with using deregulation in many of these targets to subsequently predict PCa or BPH were also determined. This research project has identified a number of potential targets, detectable in urine, which merit further investigation towards the accurate identification of PCa and its discrimination from BPH. The significance of this work is amplified by the non-invasive nature of the sample source from which these candidates were derived, urine. Many cancer biomarker discovery studies have tended to focus primarily on blood (plasma or serum) and/or tissue samples. This is one of the first PCa biomarker studies to focus exclusively on urine as a sample source.
Resumo:
The paper finds evidence that the equity-based CEO pay is positively related to firm performance and risk-taking. Both stock price and operating performance as well as firm's riskiness increase in the pay-performance sensitivities (PPS) provided by CEO stock options and stock holdings. PPS can explain stock returns better as an additional factor to the Fama-French 3-factor model. When CEOs are compensated with higher PPS, firms experience higher return on asset (ROA). The higher PPS also leads to the higher risk-taking. While CEO incentive compensation has been perceived mixed on its effectiveness, this study provides support to the equity-based CEO compensation in reducing agency conflicts between CEOs and shareholders.