6 resultados para Schrodinger-Newton equation

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Zubarev equation of motion method has been applied to an anharmonic crystal of O( ,,4). All possible decoupling schemes have been interpreted in order to determine finite temperature expressions for the one phonon Green's function (and self energy) to 0()\4) for a crystal in which every atom is on a site of inversion symmetry. In order to provide a check of these results, the Helmholtz free energy expressions derived from the self energy expressions, have been shown to agree in the high temperature limit with the results obtained from the diagrammatic method. Expressions for the correlation functions that are related to the mean square displacement have been derived to 0(1\4) in the high temperature limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have calculated the thermodynamic properties of monatomic fcc crystals from the high temperature limit of the Helmholtz free energy. This equation of state included the static and vibrational energy components. The latter contribution was calculated to order A4 of perturbation theory, for a range of crystal volumes, in which a nearest neighbour central force model was used. We have calculated the lattice constant, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the adiabatic and the isothermal bulk modulus, and the Gruneisen parameter, for two of the rare gas solids, Xe and Kr, and for the fcc metals Cu, Ag, Au, Al, and Pb. The LennardJones and the Morse potential were each used to represent the atomic interactions for the rare gas solids, and only the Morse potential was used for the fcc metals. The thermodynamic properties obtained from the A4 equation of state with the Lennard-Jones potential, seem to be in reasonable agreement with experiment for temperatures up to about threequarters of the melting temperature. However, for the higher temperatures, the results are less than satisfactory. For Xe and Kr, the thermodynamic properties calculated from the A2 equation of state with the Morse potential, are qualitatively similar to the A 2 results obtained with the Lennard-Jones potential, however, the properties obtained from the A4 equation of state are in good agreement with experiment, since the contribution from the A4 terms seem to be small. The lattice contribution to the thermal properties of the fcc metals was calculated from the A4 equation of state, and these results produced a slight improvement over the properties calculated from the A2 equation of state. In order to compare the calculated specific heats and bulk moduli results with experiment~ the electronic contribution to thermal properties was taken into account~ by using the free electron model. We found that the results varied significantly with the value chosen for the number of free electrons per atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Christopher Newton was born in England in June of 1936. He received his education at Sir Roger Manwood’s School in Kent, the University of Leeds, Purdue University in Indiana and the University of Illinois where he received his M.A. He founded Theatre Calgary in 1968 and was the artistic director there until 1971. He was appointed as the artistic director of the Vancouver Playhouse where he established the Playhouse Acting School with Powys Thomas. Mr. Newton has also performed and directed at Stratford Festivals and on Broadway. He became the artistic director at Shaw Festival in Niagara-on-the-Lake in 1979 and remained there for 23 seasons until 2002. Mr. Newton has many television, radio and film credits to his name as well as having written many stage plays. Mr. Newton has received honorary degrees from Brock University (1986), the University of Guelph (1989), Wilfrid Laurier University (1997) and Buffalo State University. He was made an Honorary Fellow at the Royal Conservatory of Music of Toronto (1993) and of Ryerson Polytechnic University (1995). He has won the Governor General’s performing arts award (2000), the Molson Prize and the Thomas DeGaetani Award from the United States Institute for Theatre Technology. In 1996 he was made an Honorary Life Member of the Association for Canadian Theatre Research and in the same year he received the M. Joan Chalmers Award for Artistic Direction. In 1995, he was made a Member of the Order of Canada and he won a Governor General's Performing Arts Award in 2000. Christopher Newton is currently the Artistic Director Emeritus at the Shaw Festival. Sources: http://www.shawfest.com/the-ensemble/christopher-newton/ http://www.thecanadianencyclopedia.com/articles/christopher-newton

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the extended Tanh method to obtain some exact solutions of KdV-Burgers equation. The principle of the Tanh method has been explained and then apply to the nonlinear KdV- Burgers evolution equation. A finnite power series in tanh is considered as an ansatz and the symbolic computational system is used to obtain solution of that nonlinear evolution equation. The obtained solutions are all travelling wave solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.