2 resultados para Sandstones

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The streams flowing through the Niagara Escarpment are paved by coarse carbonate and sandstone sediments which have originated from the escarpment units and can be traced downstream from their source. Fifty-nine sediment samples were taken from five streams, over distances of 3,000 to 10,000 feet (915 to 3050 m), to determine downstream changes in sediment composition, textural characteristics and sorting. In addition, fluorometric velocity measurements were used in conjunction with measured -discharge and flow records to estimate the frequency of sediment movement. The frequency of sediments of a given lithology changes downstream in direct response to the outcrop position of the formations in the channels. Clasts derived from a single stratigraphic unit usually reach a maximum frequency within the first 1,000 feet (305 m) of transport. Sediments derived from formations at the top of waterfalls reach a modal frequency farther downstream than material originating at the base of waterfalls. Downstream variations in sediment size over the lengths of the study reaches reflect the changes in channel morphology and lithologic composition of the sediment samples. Linear regression analyses indicate that there is a decrease in the axial lengths between the intial and final samples and that the long axis decreases in length more rapidly than the intermediate, while the short axis remains almost constant. Carbonate sediments from coarse-grained, fossiliferous units - iii - are more variable in size than fine-grained dolostones and sandstones. The average sphericity for carbonates and sandstones increases from 0.65 to 0.67, while maximum projection sphericity remains nearly constant with an average value of 0.52. Pebble roundness increases more rapidly than either of the sphericity parameters and the sediments change from subrounded to rounded. The Hjulstrom diagram indicates that the velocities required to initiate transport of sediments with an average intermediate diameter of 10 cm range from 200 cm/s to 300 cm/s (6.6 ft./sec. to 9.8 ft./sec.). From the modal velocitydischarge relations, the flows corresponding to these velocities are greater than 3,500 cfs (99 m3s). These discharges occur less than 0.01 p~r cent (0.4 days) of the time and correspond to a discharge occurring during the spring flood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lower Silurian Whirlpool Sandstone is composed of two main units: a fluvial unit and an estuarine to transitional marine unit. The lowermost unit is made up of sandy braided fluvial deposits, in shallow valleys, that flowed towards the northwest. The fluvial channels are largely filled by cross-bedded, well sorted, quartzose sands, with little ripple crosslaminated or overbank shales. Erosionally overlying this lower unit are brackish water to marine deposits. In the east, this unit consists of estuarine channels and tidal flat deposits. The channels consist of fluvial sands at the base, changing upwards into brackish and tidally influenced channelized sandstones and shales. The estuarine channels flowed to the southwest. Westwards, the unit contains backbarrier facies with extensive washover deposits. Separating the backbarrier facies from shoreface sandstone facies to the west, are barrier island sands represented by barrier-foreshore facies. The barrier islands are dissected by tidal inlets characterized by fining upward abandonment sequences. Inlet deposits are also present west of the barrier island, abandoned by transgression on the shoreface. The sandy marine deposits are replaced to the west by carbonates of the Manitoulin Limestone. During the latest Ordovician, a hiatus in crustal loading during the Taconic Orogeny led to erosional offloading and crustal rebound, the eroded material distributed towards the west, northwest and north as the terrestrial deposits of the fluvial Whirlpool. The "anti-peripheral bulge" of the rebound interfered with the peripheral bulge of the Michigan Basin, nulling the Algonquin Arch, and allowing the detritus of the fluvial Whirlpool to spread onto the Algonquin Arch. The Taconic Orogeny resumed in the earliest Silurian with crustal loading to the south and southeast, and causing tilting of the surface slope in subsurface Lake Erie towards the ii southwest. Lowstand terrestrial deposits were scoured into the new slope. The new crustal loading also reactivated the peripheral bulge of the Appalachian Basin, allowing it to interact with the bulge of the Michigan Basin, raising the Algonquin Arch. The crustal loading depressed the Appalachian basin and allowed transgression to occur. The renewed Algonquin Arch allowed the early Silurian transgression to proceed up two slopes, one to the east and one to the west. The transgression to the east entered the lowstand valleys and created the estuarine Whirlpool. The rising arch caused progradation of the Manitoulin carbonates upon shoreface facies of the Whirlpool Sandstone and upon offshore facies of the Cabot Head Formation. Further crustal loading caused basin subsidence and rapid transgression, abandoning the Whirlpool estuary in an offshore setting.