6 resultados para Salivary Alpha-Amylase
em Brock University, Canada
Resumo:
A number of synthetically useful ring systems can be prepared via the intramolecular insertion of a metal-stabilized carbenoid into a heteroaromatic systems. The chemical outcome of these reactions are dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the carbenoid moiety with the aromatic fragment. Our work with furanyl and thienyl systems containing a single methylene tether have allowed for some rather atypical chemistry. For example, treatment of l-diazo-3-(2-thienyl)-2-propanone (6) with catalytic rhodium (II) acetate yields 5,6- dihydro-4^-cyclopenta[Z>]thiophen-5-one (3) while, the isomeric l-diazo-3-(3-thienyl)-2- propanone(15) gives a spiro-disulphide (20). Novel chemistry was also exhibited in the analogous furanyl systems. While treatment of l-diazo-3-(3-furanyl)-2-propanone (52) with Rh2(OAc)4 resulted in the expected 2-(4-Oxo-2-cyclopentenyliden)acetaldehyde (54), isomeric l-diazo-3-(2- furanyl)-2-propanone (8) undergoes vinylogous Wolff rearrangement to give a mixture of 6a-methyl-2,3,3a,6a-tetrahydrofuro[2,i-^>]furan-2-one (44) and 2-(2-methyl-3-furyl)acetic acid (43). Rhodium acetate catalyzed decomposition of l-diazo-3-(3-benzofuranyl)-2- propanone (84) and l-diazo-3-(2-benzofuranyl)-2-propanone (69)also allows for vinylogous Wolff rearrangement, a chemistry unseen in benzofuranyl systems with longer tethers. A number of interesting products were isolated from the trapping of intermediate ketenes. Decomposition of l-diazo-3-(3-benzothienyl)-2-propanone (100) resulted in the formation of 2,3-dihydro-l//-benzo[^]cyclopenta[^thiophen-2-one (102). However, in addition to (102), a dimer was also generated from the decomposition of l-diazo-3-(2- benzothienyl)-2-propanone (109). The insight into the mechanistic underpinnings of the above reactions are provided by molecular modeling at a PM3 level.
Resumo:
Many studies investigating the relationship between hormones and competition have focused on athletic competition. The athletic setting enables r researchers to investigate the hormone-behaviour relationship in a relatively controlled environment. However, research to date has been based on observations made from single status contests and/or weekend tournaments and as such, does not provide a clear picture of an individual's average hormonal responses to both victory and defeat. In appreciation of this limitation, the current study tracked elite hockey players throughout a hockey season, measuring pre- and post-game salivary testosterone and Cortisol as well as psychological measures. I was interested in determining whether status outcome (win vs. loss) would influence an individual's testosterone and Cortisol responses to competition. Furthermore, I was also interested in assessing whether testosterone and Cortisol responses were specific to the competitive environment or whether similar hormonal responses would occur during non-competitive practice sessions. Last, I was interested in whether there were any differences in pre-game hormonal and psychological states depending on where the status contest was held: home versus away. The results indicated that game outcome moderated the testosterone responses to competition. That is, testosterone increased significantly more after a victory compared to a defeat. Furthermore, a loss of status produced significantly hreports, the players did not show an anticipatory rise in either Cortisol or testosterone prior to competition. In addition to the effects of status outcome on hormonal levels, it was also found that these hormonal responses were specific to competition. The athletes in the current study did not demonstrate any hormonal responses to the practice sessions. Last, there were significant differences in pre-game testosterone as well as in selfconfidence, cognitive, and somatic anxiety levels depending on the location at which the status contest took place. Pre-game testosterone and self-confidence levels were significantly higher prior to games played in the home venue. In contrast, pre-game somatic and cognitive anxiety levels were significantly higher prior to games played in the away venue. The current findings add to the developing literature on the relationship between hormones and competition. This was the first study to detect a moderating effect of status outcome on testosterone responses in a team sport. Furthermore, this was also the first study in humans to demonstrate that post-contest Cortisol levels were significantly higher after a loss of status. Last, the current study also adds to the sport psychology literature by demonstrating that pre-game psychological variables differ depending on where the status contest is being held: higher self-confidence at home and higher somatic and cognitive anxiety away. Taken together, the results from the current thesis may have important practical relevance to coaches, trainers and sport psychologists who are always trying to find ways to maximize performance. post-game Cortisol levels than did an increase in status. In contrast to previous
Resumo:
Recent studies have shown that the rhodium (II) acetate decomposition chemistry observed for a-diazoketones tethered to thienyl, furanyl, and benzofuranyl moieties is dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the diazoketone moiety with the aromatic fragment. The present thesis expands on these results and focuses on a-diazoketones tethered to benzothiophenes, pyrroles and indoles by a methylene linker. In the case of benzothiophenes, it was shown that the rhodium catalyst decomposition of I-diazo-4-(3-benzothienyl)-2-butanone (146) and 1-diazo-4-(3benzothienyl)- 2-butanone (152) allow for the isolation of 1,2,3a,3b-tetrahydro-3Hbenzo[ b]cyclopenta[1,3]cyclopropa- [1 ,2-d]thiophen-3-one (147) and 1,2,3a,3btetrahydro- 3H-benzo[b]cyclopenta[1,3]cyclopropa[1,2-d]thiophen-3-one (153). However treatment of 1-diazo-3-(3-Benzothienyl)-2-Propanone (165) with Rh(II) acetate results in the formation of 2,3-Dihydro-1H-benzo[b]cyclopenta[d]thiophen-2-one (159), while 1diazo- 3-(2-Benzothienyl)-2-Propanone with the same condition gives 5,5-bis( 1benzothiophen- 2-ylmethyl)-2(5H)-furanone (166) along with the tricycle 159. The chemistry of the pyrrolyl and the indolyl moieties linked to terminal adiazoketone systems was also investigated. The decomposition of I-diazo-(2-pyrrolyl)-2propanone (173) results in the formation of two products; the N-H insertion product IHpyrrolizin- 2(3H)-one (176) and the alkylation product 4,6-dihydrocyclopenta[b]pyrrol5( 1 H)-one (180). When 1-Diazo-3-(3-indoly)-3-propanone (194) is treated with catalytic amount of Rh (II) 3,4-dihydrocyclopenta[b]indol-2(1H)-one (193) is isolated quantitatively. The later reaction when monitored using IH NMR the intermediate 200 can be seen whose structure was confirmed by the comparison to series of model compounds. The mechanisms underlying these reactions as well as their synthetic utility is discussed.
Resumo:
A. strain of Drosophila melanog-aster deficient in null amylase activity (Amylase ) was isolated from a wild null population of flies. The survivorship of Amylase homozygous flies is very low when the principal dietary carbohydrate source is starch. However, the survivorship of the null Amylase genotype is comparable to the wild type when the dietary starch is replaced by glucose. In addition, the null viability of the amylase-producing and Amylase strains is comparable v and very lm<] f on a medium with no carbohydrates . Furthermore, amylase-producing genotypes were shovm to excrete enzymatically active amylase protein into the food medium. The excreted amylase causes the external breakdown of dietary starch to sugar. These results led to the following null prediction: the viability of the A.mvlase genotype (fed on a starch rich diet) might increase in the presence of individuals which were amylase-producing. It was shown experimentally that such an increase in viability did in fact occur and that this increase v\Tas proportional to the number of mnylase..::producing fli.es present. These results provide a unique example of a non-"competi ti ve inter-genotype interaction, and one where the underlying physio~ logical and biochemical mechanism has been fully understood.
Resumo:
I present evidence of an antioxidant mechanism for vitamin E that correlates strongly with its physical location in a model lipid bilayer. These data address the overlooked problem of the physical distance between the vitamin's reducing hydrogen and lipid acyl chain radicals. The combined data from neutron diffraction, NMR and UV spectroscopy experiments, all suggest that reduction of reactive oxygen species and lipid radicals occurs specifically at the membrane's hydrophobic-hydrophilic interface. The latter is possible when the acyl chain adopts conformations in which they snorkel to the interface from the hydrocarbon matrix. Moreover, not all model lipids are equal in this regard, as indicated by the small differences in the vitamin's location. The present result is a clear example of the importance of lipid diversity in controlling the dynamic structural properties of biological membranes. Importantly, these results suggest that measurements of alpha-tocopherol oxidation kinetics, and its products, should be revisited by taking into consideration the physical properties of the membrane in which the vitamin resides.