14 resultados para Saccharomyces cerevisiae

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adapted metabolic response of commercial wine yeast under prolonged exposure to concentrated solutes present in Icewine juice is not fully understood. Presently, there is no information regarding the transcriptomic changes in gene expression associated with the adaptive stress response ofwine yeast during Icewine fermentation compared to table wine fermentation. To understand how and why wine yeast respond differently at the genomic level and ultimately at the metabolic level during Icewine fermentation, the focus ofthis project was to identify and compare these differences in the wine yeast Saccharomyces cerevisiae KI-Vll16 using cDNA microarray technology during the first five days of fermentation. Significant differences in yeast gene expression patterns between fermentation conditions were correlated to differences in nutrient utilization and metabolite production. Sugar consumption, nitrogen usage and metabolite levels were measured using enzyme assays and HPLC. Also, a small subset of differentially expressed genes was verified using Northern analysis. The high osmotic stress experienced by wine yeast throughout Icewine fermentation elicited changes in cell growth and metabolism correlating to several fermentation difficulties, including reduced biomass accumulation and fermentation rate. Genes associated with carbohydrate and nitrogen transport and metabolism were expressed at lower levels in Icewine juice fermenting cells compared to dilute juice fermenting cells. Osmotic stress, not nutrient availability during Icewine fermentation appears to impede sugar and nitrogen utilization. Previous studies have established that glycerol and acetic acid production are increased in yeast during Icewine fermentation. A gene encoding for a glycerollW symporter (STL1) was found to be highly expressed up to 25-fold in the i Icewine juice condition using microarray and Northern analysis. Active glycerol transport by yeast under hyperosmotic conditions to increase cytosolic glycerol concentration may contribute to reduced cell growth observed in the Icewine juice condition. Additionally, genes encoding for two acetyl CoA synthetase isoforms (ACSl and ACS2) were found to be highly expressed, 19- and II-fold respectively, in dilute juice fermenting cells relative to the Icewine juice condition. Therefore, decreased conversion of acetate to acetyl-CoA may contribute to increased acetic acid production during Icewine fermentation. These results further help to explain the response of wine yeast as they adapt to Icewine juice fermentation. ii

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria have an important role in cell metabolism, being the major site of ATP production via oxidative phosphorylation (OXPHOS). Accumulation of mtDNA mutations have been linked to the development of respiratory dysfunction, apoptosis, and aging. Base excision repair (BER) is the major and the only certain repair pathway existing in mitochondria that is in responsible for removing and repairing various base modifications as well as abasic sites (AP sites). In this research, Saccharomyces cerevisiae (S. cerevisiae) BER gene knockout strains, including 3 single DNA glycosylase gene knockout strains and Ap endonuclease (Apn 1 p) knockout strain were used to examine the importance of this DNA repair pathway to the maintenance of respiratory function. Here, I show that individual DNA glycosylases are nonessential in maintenance of normal function in yeast mitochondria, corroborating with previous research in mammalian experimental models. The yeast strain lacking Apn 1 p activity exhibits respiratory deficits, including inefficient and significantly low intracellular ATP level, which maybe due to partial uncoupling of OXPHOS. Growth of this yeast strain on respiratory medium is inhibited, but no evidence was found for increased ROS level in Apn 1 p mitochondria. This strain also shows an increased cell size, and this observation combined with an uncoupled OXPHOS may indicate a premature aging in the Apnlp knockout strain, but more evidence is needed to support this hypothesis. However, the BER is necessary for maintenance of mitochondrial function in respiring S.cerevisiae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The manipulation of large (>10 kb) plasmid systems amplifies problems common to traditional cloning strategies. Unique or rare restriction enzyme recognition sequences are uncommon and very rarely located in opportunistic locations. Making site-specific deletions and insertions in larger plasmids consequently leads to multiple step cloning strategies that are often limited by time-consuming, low efficiency linker insertions or blunt-end cloning strategies. Manipulation ofthe adenovirus genome and the genomes ofother viruses as bacterial plasmids are systems that typify such situations. Recombinational cloning techniques based on homologous recombination in Saccharomyces cerevisiae that circumvent many ofthese common problems have been developed. However, these techniques are rarely realistic options for such large plasmid systems due to the above mentioned difficulties associated with the addition ofrequired yeast DNA replication, partitioning and selectable marker sequences. To determine ifrecombinational cloning techniques could be modified to simplify the manipulation of such a large plasmid system, a recombinational cloning system for the creation of human adenovirus EI-deletion rescue plasmids was developed. Here we report for the first time that the 1,456 bp TRP1/ARS fragment ofYRp7 is alone sufficient to foster successful recombinational cloning without additional partitioning sequences, using only slight modifications of existing protocols. In addition, we describe conditions for efficient recombinational cloning involving simultaneous deletion of large segments ofDNA (>4.2 kb) and insertion of donor fragment DNA using only a single non-unique restriction site. The discovery that recombinational cloning can foster large deletions has been used to develop a novel recombiliational cloillng technique, selectable inarker 'kilockouf" recombinational cloning, that uses deletion of a yeast selectable marker coupled with simultaneous negative and positive selection to reduce background transformants to undetectable levels. The modification of existing protocols as described in this report facilitates the use of recombinational cloning strategies that are otherwise difficult or impractical for use with large plasmid systems. Improvement of general recombinational cloning strategies and strategies specific to the manipulation ofthe adenovirus genome are considered in light of data presented herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cloned dihydrofolate reductase gene of Saccharomyces cerevisiae (DFR 1) is expressed in Escherichia coli. Bacterial strain JF1754 transformed with plasmids containing DFR 1 is at least 5X more resistant to inhibition by the folate antagonist trimethoprim. Expression of yeast DFR 1 in E. coli suggests it is likely that the gene lacks intervening sequences. The 1.8 kbp DNA fragment encoding yeast dhfr activity probably has its own promotor, as the gene is expressed in both orientations in E. coli. Expression of the yeast dhfr gene cloned into M13 viral vectors allowed positive selection of DFR 1 - M13 bacterial transfectants in medium supplemented with trimethoprim. A series of nested deletions generated by nuclease Bal 31 digestion and by restriction endonuclease cleavage of plasmids containing DFR 1 physically mapped the gene to a 930 bp region between the Pst 1 and Sal 1 cut sites. This is consistent with the 21,000 molecular weight attributed to yeast dhfr in previous reports. From preliminary DNA sequence analysis of the dhfr DNA fragment the 3' terminus of DFR 1 was assigned to a position 27 nucleotides from the Eco Rl cut site on the Bam Hi - Eco Rl DNA segment. Several putative yeast transcription termination consensus sequences were identified 3' to the opal stop codon. DFR 1 is expressed in yeast and it confers resistance to the antifolate methotrexate when the gene is present in 2 - 10 copies per cell. Plasmid-dependent resistance to methotrexate is also observed in a rad 6 background although the effect is somewhat less than that conferred to wild-type or rad 18 cells. Integration of DFR 1 into the yeast genome showed an intermediate sensitivity to folate antagonists. This may suggest a gene dosage effect. No change in petite induction in these yeast strains was observed in transformed cells containing yeast dhfr plasmids. The sensitivity of rad 6 , rad 18 and wild-type cell populations to trimethoprim were unaffected by the presence of DFR 1 in transformants. Moreover, trimethoprim did not induce petites in any strain tested, which normally results if dhfr is inhibited by other antifolates such as methotrexate. This may suggest that the dhfr enzyme is not the only possible target of trimethoprim in yeast. rad 6 mutants showed a very low level of spontaneous petite formation. Methotrexate failed to induce respiratory deficient mutants in this strain which suggested that rad 6 might be an obligate grande. However, ethidium bromide induced petites to a level approximately 50% of that exhibited by wild-type and rad 18 strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleotide sequence of a genomic DNA fragment thought previously to contain the dihydrofolate reductase gene (DFR1) of Saccharomyces cerevisiae by genetic criteria was determined. This DNA fragment of 1784' basepairs contains a large open reading frame from position 800 to 1432, which encodes a enzyme with a predicted molecular weight of 24,229.8 Daltons. Analysis of the amino acid sequence of this protein revealed that the yeast polypep·tide contained 211 amino acids, compared to the 186 residues commonly found in the polypeptides of other eukaryotes. The difference in size of the gene product can be attributed mainly to an insert in the yeast gene. Within this region, several consensus sequences required for processing of yeast nuclear and class II mitochondrial introns were identified, but appear not sufficient for the RNA splicing. The primary structure of the yeast DHFR protein has considerable sequence homology with analogous polypeptides from other organisms, especially in the consensus residues involved in cofactor and/or inhibitor binding. Analysis of the nucleotide sequence also revealed the presence of a number of canonical sequences identified in yeast as having some function in the regulation of gene expression. These include UAS elements (TGACTC) required for tIle amino acid general control response, and "TATA H boxes as well as several consensus sequences thought to be required for transcriptional termination and polyadenylation. Analysis of the codon usage of the yeast DFRl coding region revealed a codon bias index of 0.0083. this valve very close to zero suggestes 3 that the gene is expressed at a relatively low level under normal physiological conditions. The information concerning the organization of the DFRl were used to construct a variety of fusions of its 5' regulatory region with the coding region of the lacZ gene of E. coli. Some of such fused genes encoded a fusion product that expressed in E.coli and/or in yeast under the control of the 5' regulatory elements of the DFR1. Further studies with these fusion constructions revealed that the beta-galactosidase activity encoded on multicopy plasmids was stimulated transiently by prior exposure of yeast host cells to UV light. This suggests that the yeast PFRl gene is indu.ced by UV light and nlay in1ply a novel function of DHFR protein in the cellular responses to DNA damage. Another novel f~ature of yeast DHFR was revealed during preliminary studies of a diploid strain containing a heterozygous DFRl null allele. The strain was constructed by insertion of a URA3 gene within the coding region of DFR1. Sporulation of this diploid revealed that meiotic products segregated 2:0 for uracil prototrophy when spore clones were germinated on medium supplemented with 5-formyltetrahydrofolate (folinic acid). This finding suggests that, in addition to its catalytic activity, the DFRl gene product nlay play some role in the anabolisln of folinic acid. Alternatively, this result may indicate that Ura+ haploid segregants were inviable and suggest that the enzyme has an essential cellular function in this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high sugar concentration in Icewine juice exerts hyperosmotic stress in the wine yeast causing water loss and cell shrinkage. To counteract the dehydration, yeast synthesize and accumulate glycerol as an internal osmolyte. In a laboratory strain of S. cerevisiae, STLl encodes for Stllp, an H+ /glycerol symporter that is glucose inactivated, but induced upon hyperosmotic stress. STLl, was found to be a highly upregulated gene in Icewine fermenting cells and its expression was 25-fold greater than in yeast cells fermenting diluted Icewine juice, making it one of the most differentially expressed genes between the two fermentation conditions. In addition, Icewine fermenting cells showed a two-fold higher glycerol production in the wine compared to yeast fermenting diluted Icewine juice. We proposed that Stllp is (1) active during Icewine fermentation and is not glucose inactivated and (2) its activity contributes to the limited cell growth observed during Icewine fermentation as a result of the dissipation of the plasma membrane proton gradient. To measure the contribution ofStl1p in active glycerol transport (energy dependent) during Icewine fermentation, we first developed an Stllp-dependent (14C]glycerol uptake assay using a laboratory strain of S. cerevisiae (BY 4742 and LiSTLl) that was dependent on the plasma membrane proton gradient and therefore energy-dependent. Wine yeast K1-Vll16 was also shown to have this energy dependent glycerol uptake induced under salt stress. The expression of STLl and Stllp activity were compared between yeast cells harvested from Icewine and diluted Icewine fermentations. Northern blot analysis revealed that STLl was expressed in cells fermenting Icewine juice but not expressed under the diluted juice conditions. Glycerol uptake by cells fermenting Icewine juice was not significantly different than cells fermenting diluted Icewine juice on day 4 and day 7 of Vidal and Riesling fermentations respectively, despite encountering greater hyperosmotic stress. Furthermore, energy- dependent glycerol uptake was not detected under either fermentation conditions. Because our findings show that active glycerol uptake was not detected in yeast cells harvested from Icewine fermentation, it is likely that Stllp was glucose inactivated despite the hyperosmotic stress induced by the Icewine juice and therefore did not play a role in active glycerol uptake during Icewine fermentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wine produced using an appassimento-type process represents a new and exciting innovation for the Ontario wine industry. This process involves drying grapes that have already been picked from the vine, which increases the sugar content due to dehydration and induces a variety of changes both within and on the surface of the grapes. Increasing sugar contents in musts subject wine yeast to conditions of high osmolarity during alcoholic fermentations. Under these conditions, yeast growth can be inhibited, target alcohol levels may not be attained and metabolic by-products of the hyperosmotic stress response, including glycerol and acetic acid, may impact wine composition. The further metabolism of acetic acid to acetylCoA by yeast facilitates the synthesis of ethyl acetate, a volatile compound that can also impact wine quality if present in sufficiently high concentrations. The first objective of this project was to understand the effect of yeast strain and sugar concentration on fermentation kinetics and metabolite formation, notably acetic acid and ethyl acetate, during fermentation in appassimento-type must. Our working hypotheses were that (1) the natural isolate Saccharomyces bayanus would produce less acetic acid and ethyl acetate compared to Saccharomyces cerevisiae strain EC-1118 fermenting the high and low sugar juices; (2) the wine produced using the appassimento process would contain higher levels of acetic acid and lower levels of ethyl acetate compared to table wine; (3) and the strains would be similar in the kinetic behavior of their fermentation performances in the high sugar must. This study determined that the S. bayanus strain produced significantly less acetic acid and ethyl acetate in the appassimento wine and table wine fermentations. Differences in acetic acid and ethyl acetate production were also observed within strains fermenting the two sugar conditions. Acetic acid production was higher in table wine fermented by S. bayanus as no acetic acid was produced in appassimento-style wine, and 1.4-times higher in appassimento wine fermented by EC-1118 over that found in table wine. Ethyl acetate production was 27.6-times higher in table wine fermented by S. bayanus, and 5.2-times higher by EC-1118, compared to that in appassimento wine. Sugar utilization and ethanol production were comparable between strains as no significant differences were determined. The second objective of this project was to bring a method in-house for measuring the concentration of pyridine nucleotides, NAD+, NADP+, NADH and NADPH, in yeast cytosolic extract. Development of this method is of applicative interest for our lab group as it will enable the redox balance of the NAD+/ NADH and NADP+/ NADPH systems to be assessed during high sugar fermentations to determine their respective roles as metabolic triggers for acetic acid production. Two methods were evaluated in this study including a UV-endpoint method using a set of enzymatic assay protocols outlined in Bergmeyer (1974) and a colorimetric enzyme cycling method developed by Sigma-Aldrich® using commercial kits. The former was determined to be limited by its low sensitivity following application to yeast extract and subsequent coenzyme analyses, while the latter was shown to exhibit greater sensitivity. The results obtained from the kits indicated high linearity, accuracy and precision of the analytical method for measuring NADH and NADPH, and that it was sensitive enough to measure the low coenzyme concentrations present in yeast extract samples. NADtotal and NADPtotal concentrations were determined to be above the lower limit of quantification and within the range of the respective calibration curves, making this method suitable for our research purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new system was employed to study amplification of t,he DHF'R gene DFB,1 ) in Sa<,:;charoillYCB§. .Q~~Yi...S!i<;1~. . This system consists of a series of yeast strains containing a casset,te which encodes t he yeast, D..ERl gene ttghtly linked tjO a f usion of the yeast 1EU2. regulat,ory region wi tJ1 the LAQZ str ctural gene from E. cO.1-1 (,) . M. Clement , unpubl i,::;hed) . Th's casset;t e was shown t.o be integrat,ed int o a unj que chromosomal l ocati on in each strain . Yeast cells were se l ected for MTX-resistance and overproduction of ~ galac t osi d se ( B-gal ). Since the inserted DF'Rl and ~ACZ genes are independently regulated, it was thought that cel l s with this phenotype probably contain e d ampl if ications of the cassette. A lar ge variat ion in the f requn y o f MTX-resistance was found between the di ff e r ent str ains. These freqlen c ~ es r anged from about 2 x 10 - 7 fo r a population of cells containing the cassette integrated at, the BI J2.l gene in t,he middle of the long arm of chromosome V, to about 5 x 10-4 for a strain with the cassette i nserted in the r DNA cluster Abo It 85% of the MTX- res i stcmt iso l ates examined showed enhanced B·-gal act i v ity rel a t ive t o the parental strain . For the ma jorit y of strains, the mean B- gal activity in drug-r sistant clones was about 3 times that o f the parent following a single se l ect i on step . I n con t r ast, primary MTX-resistant derivat~ves of cells with the cassette inserted 3 at the rDNA cluster showed inc r eases in B- gal activity ranging from 9 - 14 f old r elative to the parent. Analysis of the latte r s train by Southe rn hybr idization indicated that the cassette was inde e d amplified several fold in MTX-re sistant derivatives. A sing l e strain, in which the cassette was inserted at the !lEA;], loc u.s , was used to examine in more detai 1 , the parameters affecting DFRl gene amplificat~ion in yeast . The mean B- gal activity in drug-resistant derivatives of this strain could be increased from 3 to 6 or 7 fold relative to the parent, by stepwise sel ection using increasing MTX concentrations. B-gal overproduction was found to be un stable in all primary and highly -resistant isolates examined. There was no indication, h owever, of a decrease i n growth r a t e in MTX-res i s tant cells which overproduced B - gal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By using glucosamine resistant mutants of Saccharomyces ceriv~sa~ an attempt was made to discover the mechanisms which cause glucose repression and/or the Crabtree effect. The strains used are 4B2, GR6, lOP3r, GR8l and GRI08. 4B2 is a wild type yeast while the others are its mutants. To characterize the biochemical reactions which made these mutants resistant to glucosamine poisoning the following experiments were done~ 1. growth and respiration; 2. transport of sugars; 3. effect of inorganic phosphate (Pi): 4. Hexokinase; 5. In yivo phosphorylation. From the above experiments the following conclusions may be drawn: (i) GR6 and lOP3r have normal respiratory and fermentative pathways. These mutants are resistant to glucosamine poisoning due to a slow rate of sugar transport which is due to change in the cell membrane. (ii) GR8l has a normal respiratory pathway. The slow growth on fermentable carbon sourCEE indicates that in GR8l the lesion is in or associated with the glycolytic pathway. The lower rate of sugar transport may be due to a change in energy metabolism. The invivo phosphorylation rate indicates that in GR81 facilitated diffusion is the dominant transport mechanism. (iii) GR108 msa normal glycolytic pathway but the respiratory pathway is abnormal. The slow rate of sugar transport is due to a change in energy metabolism. The lower percentage of in vivo phosphorylation is probably due to a lowered availability of ATP because of the mitochondrial lesion. In all mutants resistance to glucosamine poisoning is due to a lower rate of utilization of ATP. which is caused by various mechanisms (see above), making less ADP available for phosphorylation via ATP synthase which utilizes inorganic phosphate. Because of the lower utilization of Pi, the concentration of intra-mitochondrial Pi does not go down thus protecting mutants from glucosamine poisoning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999.5 B63 P54 2007

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (M. Sc.) - Brock University, 1975.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Icewine is an intensely s\veet dessert \vine fermented from the juice of naturally frozen grapes. Icewine fermentation poses many challenges such as failure to reach desired ethanol levels and production of high levels of volatile acidity in the fonn of acetic acid. This study investigated the impact of micronutrient addition (GO-FERM® and NATSTEP®) during the rehydration stage of the commercial \vine yeast Saccharomyces cerevisiae KI-VIII6 during Ice\vine fermentation. Sterile-filtered and unfiltered Riesling Ice\vine juice was inoculated \vith yeast rehydrated under four different conditions: in water only; with GO-FERM®; with NATSTEP®; or the combination of both micronutrient products in the rehydration water. Using sterile-filtered Icewine juice, yeast rehydration had a positive impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. In the sterile-filtered fermentation, yeast rehydrated with micronutrients generated 9-times less acetic acid per gram of sugar in the first 48 hours compared to yeast rehydrated only \vith water and resulted in a 17% reduction in acetic acid in the final \vine \vhen normalized to sugar consumed. However, the sterile-filtered fermentations likely became stuck due to the overc1arification of the juice as evidenced from the low sugar consumption (117 gIL) that could not be completely overcome by the micronutrient treatments (144 gIL sugar consumed) to reach a target ethanol of IO%v/v. Contrary to \vhat \vas observed in the sterile-filtered treatements, using unfiltered Ice\vine juice, yeast micronutrient addition had no significant impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. However, in the unfiltered fermentation, micronutrient addition during yeast rehydration caused a reduction in the acetic acid produced as a function of sugar consumed up to 150 giL sugar consumed.. In contrast to the sterile-filtered fermentations, the unfiltered fermentations did not become stuck as evidenced from the higher sugar consumption (l47-174g1L). The largest effects of micronutrient addition are evident in the first two days of both sterile and unfiltered fermentations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalase is the enzyme which decomposes hydrogen peroxide to water and oxygen. Escherichia coli contains two catalases. Hydroperoxidase I (HPI) is a bifunctional catalase-peroxidase. Hydroperoxidase II (HPII) is only catalytically active toward H202. Expression of the genes encoding these proteins is controlled by different regimes. HPJI is thought to be a hexamer, having one heme d cis group per enzymatic subunit. HPII wild type protein and heme containing mutant proteins were obtained from the laboratory of P. Loewen (Univ. of Manitoba). Mutants constructed by oligonucleotidedirected mutagenesis were targeted for replacement of either the His128 residue or the Asn201 residue in the vicinity of the HPII heme crevice. His128 is the residue thought to be analogous to the His74 distal axial ligand of the heme in the bovine liver enzyme, and Asn201 is believed to be a residue critical to the function of the enzyme because of its role in orienting and interacting with the substrate molecule. Investigation of the nature of the hemes via absorption spectroscopy of the unmodified catalase proteins and their derived pyridine hemochromes showed that while the bovine and Saccharomyces cerevisiae catalase enzymes are protoheme-containing, the HPII wild type protein contains heme d, and the mutant proteins contain either solely protoheme, or heme d-protoheme mixtures. Cyanide binding studies supported this, as ligand binding was monophasic for the bovine, Saccharomyces cerevisiae, and wild type HPII enzymes, but biphasic for several of the HPII mutant proteins. Several mammalian catalases, and at least two prokaryotic catalases, are known to be NADPH binding. The function of this cofactor appears to be the prevention of inactivation of the enzyme, which occurs via formation of the inactive secondary catalase peroxide compound (compound II). No physiologically plausible scheme has yet been proposed for the NADPH mediation of catalase activity. This study has shown, via fluorescence and affinity chromatography techniques, that NADPH binds to the T (Typical) and A (Atypical) catalases of Saccharomyces cerevisiae, and that wild type HPII apparently does not bind NADPH. This study has also shown that NADPH is unlike any other hydrogen donor to catalase, and addresses its features as a unique donor by proposing a mechanism whereby NADPH is oxidized and catalase is protected from inactivation via the formation of protein radical species. Migration of this radical to a position close to the NADPH is also proposed as an adjunct hypothesis, based on similar electron migrations that are known to occur within metmyoglobin and cytochrome c peroxidase when reacted with H202. Validation of these hypotheses may be obtained in appropriate future experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two cytoplasmic, glucosamine resistant mutants of Saccharomyces cerevisiae, GR6 and GR10, were examined to determine whether or not the lesions involved were located on mitochondrial DNA. Detailed investigation of crosses of GR6 and GR10 or their derivatives to strains bearing known mitochondrial markers demonstrated that: 1. the frequency of glucos~~ine resistance in diploids was independent of factors influencing mitochondrial marker output. 2. upon tetrad analysis a variety of tetrad ratios was observed for glucosamine resistance whereas mitochondrial markers segregated 4:0 or 0:4 (resistant:sensitive). 3. glucosamine resistance and mitochondrial markers segregated differentially with time. 4. glucosamine resistance persisted following treatment of a GRIO derivative with ethidium bromide at concentrations high enough to eliminate all mitochondrial DNA. 5. haploid spore clones displayed two degrees of glucosamine resistance, weak and strong, while growth due to mitochondrial mutations was generally thick and confluent. 6. a number of glucosamine resistant diploids and haploids, which also possessed a mithchondrial resistance mutation, were unable to grow on medium containing both glucosamine and the particular drug involved. 3 These observations 1~ 6 provided strong evidence that the cytoplasmic glucosamine resistant mutations present in GR6 and GRiO were not situated on mitochondrial DNA. Comparison of the glucosamine resistance mutations to some other known cytoplasmic determinants revealed that: 7. glucosamine resistance and the expression of the killer phenotype were separate phenomena. 8. unlike yeast carrying resistance conferring episomes GR6 and GR10 were not resistant to venturicidin or oligomycin and the GR factor exhibited genetic behaviour different from that of the episomal determinants. These results 7--+8 suggested that glucosamine resistance was not associated with the killer determinant nor with alleged yeast episomes. It is therefore proposed that a yeast plasmid(s), previously undescribed, is responsible for glucosamine resistance. The evidence to date is compatible with the hypothesis that GR6 and GR10 carry allelic mutations of the same plasmid which is tentatively designated (GGM).