2 resultados para SURROGATE LIFE CYCLE
em Brock University, Canada
Resumo:
The goal ofthis literature review is to inform the reader on several aspects of West Nile Virus (WNV) transmission by its mosquito vector, Culex pipiens and to elucidate how Cx. pipiens and WNV are intertwined. The first few sections of the literature review describe the life cycle and blood feeding behaviours ofmosquitoes so that baseline data ofmosquito biology are established. In addition to explaining how and why a mosquito blood feeds, the section on "Blood Meal Analysis" describes the different methods for determining the vertebrate source of mosquito blood meals and a brief history of these testing methods. Since this thesis looks at the feeding behaviour of Cx. pipiens, it is important to know how to determine what they are feeding upon. Discussion on other mosquito-borne diseases related to WNV gives a broader perspective to the thesis, and examines other diseases that have occurred in Ontario in the past. This is followed by background information on WNV and theories on how this virus came to North America and how it relates to Cx. pipiens. The final sections discuss Cx. pipiens and give background information to how this species of mosquito exists and behaves within North America.
Resumo:
While nitrogen is critical for all plants, they are unable to utilize organically bound nitrogen in soils. Therefore, the majority of plants obtain useable nitrogen through nitrogen fixing bacteria and the microbial decomposition of organic matter. In the majority of cases, symbiotic microorganisms directly furnish plant roots with inorganic forms of nitrogen. More than 80% of all land plants form intimate symbiotic relationships with root colonizing fungi. These common plant/fungal interactions have been defined largely through nutrient exchange, where the plant receives limiting soil nutrients, such as nitrogen, in exchange for plant derived carbon. Fungal endophytes are common plant colonizers. A number of these fungal species have a dual life cycle, meaning that they are not solely plant colonizers, but also saprophytes, insect pathogens, or plant pathogens. By using 15N labeled, Metarhizium infected, wax moth larvae (Galleria mellonella) in soil microcosms, I demonstrated that the common endophytic, insect pathogenic fungi Metarhizium spp. are able to infect living soil borne insects, and subsequently colonize plant roots and furnish ts plant host with useable, insect-derived nitrogen. In addition, I showed that another ecologically important, endophytic, insect pathogenic fungi, Beauveria bassiana, is able to transfer insect-derived nitrogen to its plant host. I demonstrated that these relationships between various plant species and endophytic, insect pathogenic fungi help to improve overall plant health. By using 13C-labeled CO2, added to airtight plant growth chambers, coupled with nuclear magnetic resosnance spectroscopy, I was able to track the movement of carbon from the atmosphere, into the plant, and finally into the root colonized fungal biomass. This indicates that Metarhizium exists in a symbiotic partnership with plants, where insect nitrogen is exchanged for plant carbon. Overall these studies provide the first evidence of nutrient exchange between an insect pathogenic fungus and plants, a relationship that has potentially useful implications on plant primary production, soil health, and overall ecosystem stability.