2 resultados para SUBCORTICAL SIGNAL HYPERINTENSITIES

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matings systems using signals for sexual communication have been studied extensively and results commonly suggest that females use these signals for locating males, species-identification, and mate choice. Although numerous mating systems employ multiple signals, research has generally focused on long-range signals perhaps due to their prominence and ease of study. This study focused on the short-range acoustic courtship song of crickets. The results presented here suggest this signal is under selection by female choice. Females mated preferentially with males having shorter silences between the two types of ticks within the song. The length of these silences (Gap 1) was correlated with male condition such that males having long silences were significantly lower in mass with respect to body size when compared to males having short silences. Both Gap 1 length and male condition were significantly repeatable within males over time suggesting the possibility these traits have a genetic basis. This study is the first empirical study to test female preferences within the natural variation of the courtship song. It now appears, at least in crickets, that both the longand short-range signals of a multi-signal mating system may contribute to male mating success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Feedback-Related Negativity (FRN) is thought to reflect the dopaminergic prediction error signal from the subcortical areas to the ACC (i.e., a bottom-up signal). Two studies were conducted in order to test a new model of FRN generation, which includes direct modulating influences of medial PFC (i.e., top-down signals) on the ACC at the time of the FRN. Study 1 examined the effects of one’s sense of control (top-down) and of informative cues (bottom-up) on the FRN measures. In Study 2, sense of control and instruction-based (top-down) and probability-based expectations (bottom-up) were manipulated to test the proposed model. The results suggest that any influences of medial PFC on the activity of the ACC that occur in the context of incentive tasks are not direct. The FRN was shown to be sensitive to salient stimulus characteristics. The results of this dissertation partially support the reinforcement learning theory, in that the FRN is a marker for prediction error signal from subcortical areas. However, the pattern of results outlined here suggests that prediction errors are based on salient stimulus characteristics and are not reward specific. A second goal of this dissertation was to examine whether ACC activity, measured through the FRN, is altered in individuals at-risk for problem-gambling behaviour (PG). Individuals in this group were more sensitive to the valence of the outcome in a gambling task compared to not at-risk individuals, suggesting that gambling contexts increase the sensitivity of the reward system to valence of the outcome in individuals at risk for PG. Furthermore, at-risk participants showed an increased sensitivity to reward characteristics and a decreased response to loss outcomes. This contrasts with those not at risk whose FRNs were sensitive to losses. As the results did not replicate previous research showing attenuated FRNs in pathological gamblers, it is likely that the size and time of the FRN does not change gradually with increasing risk of maladaptive behaviour. Instead, changes in ACC activity reflected by the FRN in general can be observed only after behaviour becomes clinically maladaptive or through comparison between different types of gain/loss outcomes.