4 resultados para SIMPLY CONNECTED ALGEBRAS

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relation algebras and categories of relations in particular have proven to be extremely useful as a fundamental tool in mathematics and computer science. Since relation algebras are Boolean algebras with some well-behaved operations, every such algebra provides an atom structure, i.e., a relational structure on its set of atoms. In the case of complete and atomic structure (e.g. finite algebras), the original algebra can be recovered from its atom structure by using the complex algebra construction. This gives a representation of relation algebras as the complex algebra of a certain relational structure. This property is of particular interest because storing the atom structure requires less space than the entire algebra. In this thesis I want to introduce and implement three structures representing atom structures of integral heterogeneous relation algebras, i.e., categorical versions of relation algebras. The first structure will simply embed a homogeneous atom structure of a relation algebra into the heterogeneous context. The second structure is obtained by splitting all symmetric idempotent relations. This new algebra is in almost all cases an heterogeneous structure having more objects than the original one. Finally, I will define two different union operations to combine two algebras into a single one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Two-Connected Network with Bounded Ring (2CNBR) problem is a network design problem addressing the connection of servers to create a survivable network with limited redirections in the event of failures. Particle Swarm Optimization (PSO) is a stochastic population-based optimization technique modeled on the social behaviour of flocking birds or schooling fish. This thesis applies PSO to the 2CNBR problem. As PSO is originally designed to handle a continuous solution space, modification of the algorithm was necessary in order to adapt it for such a highly constrained discrete combinatorial optimization problem. Presented are an indirect transcription scheme for applying PSO to such discrete optimization problems and an oscillating mechanism for averting stagnation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qualitative spatial reasoning (QSR) is an important field of AI that deals with qualitative aspects of spatial entities. Regions and their relationships are described in qualitative terms instead of numerical values. This approach models human based reasoning about such entities closer than other approaches. Any relationships between regions that we encounter in our daily life situations are normally formulated in natural language. For example, one can outline one's room plan to an expert by indicating which rooms should be connected to each other. Mereotopology as an area of QSR combines mereology, topology and algebraic methods. As mereotopology plays an important role in region based theories of space, our focus is on one of the most widely referenced formalisms for QSR, the region connection calculus (RCC). RCC is a first order theory based on a primitive connectedness relation, which is a binary symmetric relation satisfying some additional properties. By using this relation we can define a set of basic binary relations which have the property of being jointly exhaustive and pairwise disjoint (JEPD), which means that between any two spatial entities exactly one of the basic relations hold. Basic reasoning can now be done by using the composition operation on relations whose results are stored in a composition table. Relation algebras (RAs) have become a main entity for spatial reasoning in the area of QSR. These algebras are based on equational reasoning which can be used to derive further relations between regions in a certain situation. Any of those algebras describe the relation between regions up to a certain degree of detail. In this thesis we will use the method of splitting atoms in a RA in order to reproduce known algebras such as RCC15 and RCC25 systematically and to generate new algebras, and hence a more detailed description of regions, beyond RCC25.