4 resultados para SEPARATIONS
em Brock University, Canada
Resumo:
Calculations are performed on the \S <:Jd ground states of
d ' +
the H and HC) molecules using a basis set of non-integral
~ ~ I
elliptical orbitals. Different variational wavefunctions constructed
i- for H~ involved one parameter to three par~~eter variation.
In order to l"'educe the ntunber of parameters in most commonly
0-
used basis orbitals set, the importance of the term (,+~)
Y\ over the term ;u 'Where n is a variational pararneter and the value
of cr may be given by boundary condition or cusp condition is
outlined in Chapters II and III. It is found that the two parameter
-+
Resumo:
Phospholipids in water form lamellar phases made up of alternating layers of water and bimolecular lipid leaflets. Three complementary methods, osmotic, mechanical, and vapour pressures, were used to measure the work of removing water from lamellar phases composed of frozen dipalmitoylphosphatidylcholine ( DPPC ), melted DPPC, egg phosphatidylethanolamine or equimolar mixtures of DPPC and cholesterol ( DPPC/CHOL ), Concurrently the structural changes that resulted from this water removal were measured using X-ray diffraction. The work was divided into that which forces the bilayers together ( F ) and that which compresses the molecules together within the bilayers ( F )# A large repulsive force exists between bilayers composed of each of the lipids studied and this force increases exponentially as bilayer separation is decreased. F is affected by the nature of the head groups, conformation of the acyl chains and heterogeneity of these chains. In general all of the melted phosphatidylcholines ( melted DPPC, egg lecithin and DPPC/CHOL ) have large equilibrium separations in excess water resulting from large repulsive hydration forces between these bilayers. By comparison, egg PE has an increased attractive force, and frozen DPPC has a decreased hydration force; each results in smaller separations in water for these two lipids. The chemical potentials of the water between the bilayers for all these lipids lie on a continuum, indicating that interbilayer water cannot be characterized by two discrete states, usually referred to as "bound" or "non**bound". For all lipids studied a maximum of 25 % of the total work done on the system goes into deforming the bilayers. The method used here viii to separate repulsion from deformation, developed for us by v. A. Parsegian, provides a unique method for the measurement of lateral pressure of a bilayer and its modulus of deformability ( Y ). Lateral pressure is affected by the nature of the head group, conformation and heterogeneity of the acyl chains. For small changes in molecular surface area ( A ) near equilibrium, both melted and frozen DPPC have similar values for the deformability modulus. Thus in this regime it requires about the same force to change the angle of tilt of frozen chains as it does to compress the fluid bilayer. The introduction of cholesterol into bilayers of DPPC reduces dramatically the lateral pressure of the bilayers over a large range of molecular surface areas ( A ). The variation in the magnitude of bilayer repulsion with different phospholipids provides a basis for the mechanism of lipid segregation in mixed lipid systems and suggests that interacting heterogeneous membranes may influence or modulate the composition of the opposing membrane. The measurements of deformabilities of bilayers provides a direct comparison of them with the properties of monolayers.
Resumo:
Electrostatic forces between membranes containing charged lipids were assumed to play an important role in influencing interactions between membranes long before quantitative measurements of such forces were available. ~ur measurements were designed to measure electrostatic forces between layers of lecithin charged with lipi~s carrying ionizable head groups. These experiments have shown that the interactions between charged lipid bila.yere are dominated by electrostatic forces only at separations greater than 30 A. At smaller separations the repulsion between charged bilayers is dominated by strong hydration forces. The net repulsive force between egg lecithin bilayers containing various amounts of cherged lipids (phosphatidylglycerol (PG) 5,10 ano 50 mole%, phosphatidyli. nosi tol (PI) 10 mole% and sodium oleate (Na-Ol) 3,5 and 10 mole%, where mole% gives the ratio of the number of moles' of .charged lipid to the total number of moles of all lipids present in the sample) was stuoied with the help ('If the osmotic streas technique described by LeNeveu et aI, (1977). Also, the forces between pure PG were j_nvestigated in the same manner. The results have been plotted showing variation of force as a function of bilay- _ er separation dw• All curVes 90 obtained called force curves, were found to be similar in sha.pe, showing two distinct regions, one when dw<.30 A is a region cf very rapid iiivariation of force with separation ( it is the region dominated by hydre,tion force) and second when dw> 40 A is a region of very slow variation of force with separB.tion ( it is the region dominated by the electrostatic force). Between these two regions there exists a transition area in which, in most systems studied, a phase separation of lipids into fractions containing different amounts of charged groups, was observed. A qualitative analysis showed that our results were v/ell described by the simple electrostatic double -le.yer theory. For quantitative agreement between measured and calculated force curves however, the charge density for the calculations had to be taken as half of that given by the number density of charged lipids present in the lecithin bilayers. It is not clear at the moment what causes such low apparent degree of ionization among the charged head groups, and further study is needed in this area.
Resumo:
When the second of two targets (T2) is presented temporally close to the first target (T1) in rapid serial visual presentation, accuracy to detect/identify T2 is markedly reduced as compared to longer target separations. This is known as the attentional blink (AB), and is thought to reflect a limitation of selective attention. While most individuals show an AB, research has demonstrated that individuals are variously susceptible to this effect. To explain these differences, Dale and Arnell (2010) examined whether dispositional differences in attentional breadth, as measured by the Navon letter task, could predict individual AB magnitude. They found that individuals who showed a natural bias toward the broad, global level of Navon letter stimuli were less susceptible to the AB as compared to individuals who showed a natural bias toward the detailed, local aspects of Navon letter stimuli. This suggests that individuals who naturally broaden their attention can overcome the AB. However, it was unclear how stable these individual differences were over time, and whether a variety of global/local tasks could predict AB performance. As such, the purpose of this dissertation was to investigate, through four empirical studies, the nature of individual differences in both global/local bias and the AB, and how these differences in attentional breadth can modulate AB performance. Study 1 was designed to examine the stability of dispositional global/local biases over time, as well as the relationships among three different global/local processing measures. Study 2 examined the stability of individual differences in the AB, as well as the relationship among two distinct AB tasks. Study 3 examined whether the three distinct global/local tasks used in Study 1 could predict performance on the two AB tasks from Study 2. Finally, Study 4 explored whether individual differences in global/local bias could be manipulated by exposing participants to high/low spatial frequencies and Navon stimuli. In Study 1, I showed that dispositional differences in global/local bias were reliable over a period of at least a week, demonstrating that these individual biases may be trait-like. However, the three tasks that purportedly measure global/local bias were unrelated to each other, suggesting that they measure unique aspects of global/local processing. In Study 2, I found that individual variation in AB performance was also reliable over a period of at least a week, and that the two AB task versions were correlated. Study 3 showed that dispositional global/local biases, as measured by the three tasks from Study 1, predicted AB magnitude, such that individuals who were naturally globally biased had smaller ABs. Finally, in Study 4 I demonstrated that these dispositional global/local biases are resistant to both spatial frequency and Navon letter manipulations, indicating that these differences are robust and intractable. Overall, the results of the four studies in this dissertation help clarify the role of individual differences in attentional breadth in selective attention.