3 resultados para Robot Operation System (ROS)
em Brock University, Canada
Resumo:
The addition of L-Glutamate (L-GLU) and L-Hethionine ~ulfoximine (L-HSO) to mechanically isolated. photosynthetically competent, Asparagus sprengeri mesophyll cells ~u~pended in 1mM CaS04 cau~ed an immediate transient alkalinization of the cell su~pension medium in both the light and dark. The alkalinization response was specific and stereospecific as none of the L-isomers of the other 19 protein amino acids tested or D-GLU gave this response. Uptake of 14C-L-GLU was stimulated by the light. The addition of non-radioactive L-GLU. or L-GLU analogs together with 14C-L-GLU showed that only L-GLU and L-HSO stimulated alkalinization whilst inhibiting the uptake of 14C-L-GLU. Both the L-GLU dependent alkalinization and the upt~ke of 14C-L-GLU were stimulated when the external pH was decreased from 6.5 to 5.5. Increasing external K+ concentrations inhibited the uptake of 14C-L-GLU. Fusicoccin (FC) stimulated uptake. The L-GLU dependent alkalinization re~ponse exhibited monophasic saturation kinetics while the uptake of 14C-L-GLU exhibited biphasic saturation kinetics. In addition to a saturable component. the uptake kinetics also showed a linear component of uptake. Addition of L-GLU and L-MSO caused internal acidification of the cell as measured by a change in the distribution of 14C-DMO. There was no change in K+ efflux when L-GLU was added. A H+ to L-GLUinflux stoichiometry of 3:1 wa~ mea~ured at an external I.-GLU concentration of O.5mM and increased with increasing external 13 L-QLU concentration. Metabolism of L-GLU was detected manometrlcally by observing an increase in COa evolution upon the addition of L-QLU and by detection of i*C02 evolution upon the addition of »*C-L-GLU. »*C02 evolution was higher in the dark than in the light. The data are consistent with the operation of a H+/L-QLO cotransport system. The data also show that attempts to quantify the stoichlometry of the process were complicated by the metabolism of L-GLU.
Resumo:
If you want to know whether a property is true or not in a specific algebraic structure,you need to test that property on the given structure. This can be done by hand, which can be cumbersome and erroneous. In addition, the time consumed in testing depends on the size of the structure where the property is applied. We present an implementation of a system for finding counterexamples and testing properties of models of first-order theories. This system is supposed to provide a convenient and paperless environment for researchers and students investigating or studying such models and algebraic structures in particular. To implement a first-order theory in the system, a suitable first-order language.( and some axioms are required. The components of a language are given by a collection of variables, a set of predicate symbols, and a set of operation symbols. Variables and operation symbols are used to build terms. Terms, predicate symbols, and the usual logical connectives are used to build formulas. A first-order theory now consists of a language together with a set of closed formulas, i.e. formulas without free occurrences of variables. The set of formulas is also called the axioms of the theory. The system uses several different formats to allow the user to specify languages, to define axioms and theories and to create models. Besides the obvious operations and tests on these structures, we have introduced the notion of a functor between classes of models in order to generate more co~plex models from given ones automatically. As an example, we will use the system to create several lattices structures starting from a model of the theory of pre-orders.
Resumo:
This paper develops a model of short-range ballistic missile defense and uses it to study the performance of Israel’s Iron Dome system. The deterministic base model allows for inaccurate missiles, unsuccessful interceptions, and civil defense. Model enhancements consider the trade-offs in attacking the interception system, the difficulties faced by militants in assembling large salvos, and the effects of imperfect missile classification by the defender. A stochastic model is also developed. Analysis shows that system performance can be highly sensitive to the missile salvo size, and that systems with higher interception rates are more “fragile” when overloaded. The model is calibrated using publically available data about Iron Dome’s use during Operation Pillar of Defense in November 2012. If the systems performed as claimed, they saved Israel an estimated 1778 casualties and $80 million in property damage, and thereby made preemptive strikes on Gaza about 8 times less valuable to Israel. Gaza militants could have inflicted far more damage by grouping their rockets into large salvos, but this may have been difficult given Israel’s suppression efforts. Counter-battery fire by the militants is unlikely to be worthwhile unless they can obtain much more accurate missiles.