2 resultados para River micro-basin
em Brock University, Canada
Resumo:
The study area is situated in NE Newfoundland between Gander Lake and the north coast and on the boundary between the Gander and Botwood tectonostratigraphic zones (Williams et al., 1974). The area is underlain by three NE trending units; the Gander Group, the Gander River Ultramafic Belt (the GRUB) and the Davidsville Group. The easternmost Gander Group consists of a thick, psammitic unit composed predominantly of psammitic schist and a thinner, mixed unit of semipelitic and pelitic schist with minor psammite. The mixed unit may stratigraphically overlie the psammitic unit or be a lateral facies equivalent of the latter. No fossils have been recovered from the Gander Group. The GRUB is a terrain of mafic and ultramafic plutonic rocks with minor pillow lava and plagiogranite. It is interpreted to be a dismembered ophiolite in thrust contact with the Gander Group. The westernmost Davidsville Group consists of a basal conglomerate, believed deposited unconformably upon the GRUB from which it was derived, and an upper unit of greywacke and slate, mostly of turbidite origin, with minor limestone and calcareous sandstone. The limestone, which lies near the base of the unit, contains Upper Llanvirn to Lower Llandeilo fossils. The Gander and Davidsville Groups display distinctly different sedimentological , structural and metamorphic histories. The Gander Group consists of quartz-rich, relatively mature sediment. It has suffered three pre-Llanvirn deformations, of which the main deformation, Dp produced a major, NE-N-facing recumbent anticline in the southern part of the study area. Middle greenschist conditions existed from D^ to D- with growth of metamorphic minerals during each dynamic and static phase. In contrast, the mineralogically immature Davidsville Group sediment contains abundant mafic and ultramafic detritus which is absent from the Gander Group. The Davidsville Group displays the effects of a single penetrative deformation with localized D_ and D_ features, all of which can be shown to postdate D_ in the Gander Group. Rotation of the flat Gander S- into a subvertical orientation near the contact with the GRUB and the Davidsville Group is believed to be a Davidsville D^ feature. Regional metamorphism in the Davidsville Group is lower greenschist with a single growth phase, MS . These sedimentological, structural and metamorphic differences between the Gander and Davidsville Groups persist even where the GRUB is absent and the two units are in contact, indicating that the tectonic histories of the Gander and Davidsville Groups are distinctly different. Structural features in the GRUB, locally the result of multiple deformations, may be the result of Gander and/or Davidsville deformations. Metamorphism is in the greenschist facies. Geochemical analyses of the pillow lava suggest that these rocks were formed in a back-arc basin. Mafic intrusives in the Gander Group appear to be the result of magraatism separate from that producing the pillow lava. The Gander Group is interpreted to be a continental rise prism deposited on the eastern margin of the Late Precambrian-Lower Paleozoic lapetus Ocean. The GRUB, oceanic crust possibly formed in a marginal basin to the west, is believed to have been thrust eastward over the Gander Group, deforming the latter, during the pre-Llanvirnian, possibly Precambrian, Ganderian Orogeny. The Middle Ordovician and younger Davidsville Group was derived from, and deposited unconformably on, this deformed terrain. Deformation of the Davidsville Group occurred during the Middle Devonian Acadian Orogeny.
Resumo:
The Niagara River Remedial Action Plan was part of an initiative to restore the integrity of the Great Lakes Basin ecosystem. In 1972, the Great Lakes Water Quality Agreement was signed by both Canada and the United States to demonstrate their commitment to protecting this valuable resource. An amendment in 1987 stipulated that Remedial Action Plans (RAPs) be implemented in 43 ecologically compromised areas known as Areas of Concern. The Niagara River was designated as one of these areas by federal and provincial governments and the International Joint Commission, an independent and binational organization that deals with issues concerning the use and quality of boundary waters between Canada and the United States. Although the affected area included parts of both the Canadian and American side of the river, Remedial Action Plans were developed separately in both Canada and the United States. The Niagara River (Ontario) RAP is a three-stage process requiring collaboration between numerous government agencies and the public. Environment Canada, the Ontario Ministry of the Environment, and the Niagara Peninsula Conservation Authority are the agencies guiding the development and implementation of the Niagara River (Ontario) RAP. The first stage is to determine the severity and causes of the environmental degradation that resulted in the location being designated an Area of Concern; the second stage is to identify and implement actions that will restore and protect the health of the ecosystem; and the third stage is to monitor the area to ensure that the ecosystem’s health has been restored. Stage one of the RAP commenced in January 1989 when a Public Advisory Committee (PAC) was established. This committee was comprised of concerned citizens and representatives from various community groups, associations, industries and municipalities. After several years of consultation, the Niagara River (Ontario) Remedial Action Plan Stage 2 Report was released in 1995. It contained 16 goals and 37 recommendations. Among them was the need for Canadians and Americans to work more collaboratively in order to successfully restore the water quality in the Niagara River. Stage three of the Niagara River (Ontario) RAP is currently ongoing, but it is estimated that it will be completed by 2015. At that point, the Niagara River Area of Concern will be delisted, although monitoring of the area will continue to ensure it remains healthy.