5 resultados para Rifampicin-quinone

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher plants have evolved a well-conserved set of photoprotective mechanisms, collectively designated Non-Photochemical Quenching of chlorophyll fluorescence (qN), to deal with the inhibitory absorption of excess light energy by the photosystems. Their main contribution originates from safe thermal deactivation of excited states promoted by a highly-energized thylakoid membrane, detected via lumen acidification. The precise origins of this energy- or LlpH-dependent quenching (qE), arising from either decreased energy transfer efficiency in PSII antennae (~ Young & Frank, 1996; Gilmore & Yamamoto, 1992; Ruban et aI., 1992), from alternative electron transfer pathways in PSII reaction centres (~ Schreiber & Neubauer, 1990; Thompson &Brudvig, 1988; Klimov et aI., 1977), or from both (Wagner et aI., 1996; Walters & Horton, 1993), are a source of considerable controversy. In this study, the origins of qE were investigated in spinach thylakoids using a combination of fluorescence spectroscopic techniques: Pulse Amplitude Modulated (PAM) fluorimetry, pump-probe fluorimetry for the measurement of PSII absorption crosssections, and picosecond fluorescence decay curves fit to a kinetic model for PSII. Quenching by qE (,..,600/0 of maximal fluorescence, Fm) was light-induced in circulating samples and the resulting pH gradient maintained during a dark delay by the lumenacidifying capabilities of thylakoid membrane H+ ATPases. Results for qE were compared to those for the addition of a known antenna quencher, 5-hydroxy-1,4naphthoquinone (5-0H-NQ), titrated to achieve the same degree of Fm quenching as for qE. Quenching of the minimal fluorescence yield, F0' was clear (8 to 130/0) during formation of qE, indicative of classical antenna quenching (Butler, 1984), although the degree was significantly less than that achieved by addition of 5-0H-NQ. Although qE induction resulted in an overall increase in absorption cross-section, unlike the decrease expected for antenna quenchers like the quinone, a larger increase in crosssection was observed when qE induction was attempted in thylakoids with collapsed pH gradients (uncoupled by nigericin), in the absence of xanthophyll cycle operation (inhibited by DTT), or in the absence of quenching (LlpH not maintained in the dark due to omission of ATP). Fluorescence decay curves exhibited a similar disparity between qE-quenched and 5-0H-NQ-quenched thylakoids, although both sets showed accelerated kinetics in the fastest decay components at both F0 and Fm. In addition, the kinetics of dark-adapted thylakoids were nearly identical to those in qEquenched samples at F0' both accelerated in comparison with thylakoids in which the redox poise of the Oxygen-Evolving Complex was randomized by exposure to low levels of background light (which allowed appropriate comparison with F0 yields from quenched samples). When modelled with the Reversible Radical Pair model for PSII (Schatz et aI., 1988), quinone quenching could be sufficiently described by increasing only the rate constant for decay in the antenna (as in Vasil'ev et aI., 1998), whereas modelling of data from qE-quenched thylakoids required changes in both the antenna rate constant and in rate constants for the reaction centre. The clear differences between qE and 5-0H-NQ quenching demonstrated that qE could not have its origins in the antenna alone, but is rather accompanied by reaction centre quenching. Defined mechanisms of reaction centre quenching are discussed, also in relation to the observed post-quenching depression in Fm associated with photoinhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(S)-4-Hydroxy-a-lapachone has been prepared for the first time. The commercially available compound 2-acetyl-1-naphthol was used as the starting material. The synthesis involved methylation, followed by Baeyer-Villiger oxidation, and hydrolysis of the acetate to give 1-methoxy-2-naphthol. After protecting of the hydroxyl group, t-BuLi was used to form 3-(3',3'-dimethyl-acryloyl)-1- meth oxy-2- (meth oxymethoxy)-naphthalen e. eycl izationand oxidation then gave 4-keto-a-lapachone. Finally enzymic biotransformation by Mortierella isabellina ATCC 42613 was used to yield the target compound. The enantiomeric excess of the product was determined to be ~98% by using 1H NMR chiral shift analysis. The overall yield is 80/0. The biological activity of (S)-4-hydroxy-alapachone and its acetate are under investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Introducti on deals mainly with hi storical studies on aryne chemi stry and ring closure via arynes , hydride replacement from aromatic rings by nucleophi les, c l eavage of anthr aquinones in basic medium and the Leuckart reaction . This work can be divided into two main s ect i ons. Section I is concerned with the investigation of t he reaction of some aromatic ni t ro-compounds with potassamide in l iquid ammonia. 3-Amino-4- nitrobenzophenone was obtained from the reacti on of 4-nitrobenzophenone with t his reagent, toge t her with benzoic acid formed in a competing Haller-Bauer reaction. Nitrobenzene under these conditions gave a complex mixture from which 2-phenylphenol was isolated; a reaction i nvolving benzyne may be i nvo l ved. 4-Nitrodiphenyl sulfone gave 4-aminodiphenyl sulfone and 4-nitroani l ine. 4-Ethoxydiphenyl sulfone and 4-ethoxynitrobenzene were isolated when ethanol was used as a co-solvent in the reaction. Oxidative coupling reactions were observed with nitrotoluenes. 4-Nitrotoluene gave 4,4t-dinitrobibenzyl which i n a pro longed reaction gave 4,4t-dinitros t ilbene . 2-Nitrotoluene gave 2 , 2 t-dinitrobibenzyl, but not the corresponding stilbene derivative even after a longer time . A rather i nteresting result was obtained with 1-nitro-2,4,6- trimethylbenzene which gave a stilbene derivative only. Also the corresponding stilbene was obtained from bis-(4-nitrophenyl)-methane in a rather slow r eaction with this reagent . Section II deals wi th (i) the preparation of 5-chloro- 1-N-methyl aminoanthraquinone and a new synthesis of N-methyl acridones and (ii) treatment of chloro-anthraquinones with fo rmamide and a new synthesis of chloro-anthracenes . 5-Chloro-1 -N-methylaminoanthraqui none was synthesised f rom 1,5-dichloroanthraquinone by treatment with N-methylformamide. Treatment of 5-chloro-1-N-methylaminoanthraquinone with potassamide in liquid ammonia or with potassium t-butoxide i n t-butylbenzene gave N-methylacridone-1-carboxylic acid. This pleasing result, t he outcome of r i ng opening and alter native ring closure, is being extended to related ring systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dependence of the electron transfer (ET) rate on the Photosystem I (PSI) cofactor phylloquinone (A1) is studied by time-resolved absorbance and electron paramagnetic resonance (EPR) spectroscopy. Two active branches (A and B) of electron transfer converge to the FX cofactor from the A1A and A1B quinone. The work described in Chapter 5 investigates the single hydrogen bond from the amino acid residue PsaA-L722 backbone nitrogen to A1A for its effect on the electron transfer rate to FX. Room temperature transient EPR measurements show an increase in the rate for the A1A- to FX for the PsaA-L722T mutant and an increased hyperfine coupling to the 2-methyl group of A1A when compared to wild type. The Arrhenius plot of the A1A- to FX ET in the PsaA-L722T mutant suggests that the increased rate is probably the result of a slight change in the electronic coupling between A1A- and FX. The reasons for the non-Arrhenius behavior are discussed. The work discussed in Chapter 6 investigates the directionality of ET at low temperature by blocking ET to the iron-sulfur clusters FX, FA and FB in the menB deletion mutant strain of Synechocyctis sp. PCC 6803, which is unable to synthesize phylloquinone, by incorporating the high midpoint potential (49 mV vs SHE) 2,3-dichloro-1,4-naphthoquinone (Cl2NQ) into the A1A and A1B binding sites. Various EPR spectroscopic techniques were implemented to differentiate between the spectral features created from A and B- branch electron transfer. The implications of this result for the directionality of electron transfer in PS I are discussed. The work discussed in Chapter 7 was done to study the dependence of the heterogeneous ET at low temperature on A1 midpoint potential. The menB PSI mutant contains plastiquinone-9 in the A1 binding site. The solution midpoint potential of the quinone measures 100 mV more positive then wild-type phylloquinone. The irreversible ET to the terminal acceptors FA and FB at low temperature is not controlled by the forward step from A1 to FX as expected due to the thermodynamic differences of the A1 cofactor in the two active branches A and B. Alternatives for the ET heterogeneity are discussed.