8 resultados para Respiratory muscle training
em Brock University, Canada
Resumo:
Surrounding lipid droplets in skeletal muscle are the perilipin (PLIN2-5) family of proteins, regulating lipid droplet metabolism. During exercise lipid droplets provide fatty acids to the mitochondria for oxidation while increasing their proximity to each other. Whether PLIN3 and PLIN5 associate with mitochondria following contraction has not been examined. To determine whether contraction altered mitochondrial PLIN3 and PLIN5 content, sedentary and endurance trained rats underwent acute contraction. The main outcomes are; 1) mitochondrial PLIN3 content is unaltered while mitochondrial PLIN5 content is increased following an acute contraction 2) mitochondrial PLIN3 content is higher in endurance trained rats when compared to sedentary and mitochondrial PLIN5 content is similar in both conditions 3) only PLIN5 mitochondrial content is increased similarly in both groups following acute contraction. This work highlights the dynamics of these two PLIN proteins, which may have roles not only on the lipid droplet but also on the mitochondria.
Resumo:
The first and rate-limiting step of lipolysis is the removal of the first fatty acid from a triglyceride molecule; it is catalyzed by adipose triglyceride lipase (ATGL). ATGL is co-activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 protein (G0S2). G0S2 has also recently been identified as a positive regulator of oxidative phosphorylation within the mitochondria. Previous research has demonstrated in cell culture, a dose dependent mechanism for inhibition by G0S2 on ATGL. However our data is not consistent with this hypothesis. There was no change in G0S2 protein content during an acute lipolytic inducing set of contractions in both whole muscle, and isolated mitochondria yet both ATGL and G0S2 increase following endurance training, in spite of the fact that there should be increased reliance on intramuscular lipolysis. Therefore, inhibition of ATGL by G0S2 appears to be regulated through more complicated intracellular or post-translation regulation.
Resumo:
This study examined the effect of 8-weeks of resistance (RT) and plyometric (PLYO) training on maximal strength, power and jump performance compared with no added training (CON), in young male soccer players. Forty-one 11-13 year-old soccer players were divided into three groups (RT, PLYO, CON). All participants completed 5 isometric knee extensions at 90° and 5 isokinetic knee extensions at 240°/s pre- and post-training. Peak torque (PT), peak rate of torque development (pRTD), electromechanical-day (EMD), rate of muscle activation (Q30), muscle cross-sectional area (mCSA) and jump performance were examined. Both RT and PLYO resulted in significant (p < 0.05) increases in PT, pRTD and jump performance. RT resulted in significantly greater increases in both isometric and isokinetic PT, while PLYO resulted in significantly greater increases in isometric pRTD and jump performance compared with CON (p < 0.05). Q30 increased to a greater extent in PLYO (20%) compared with RT (5%) and CON (-5%) (p = 0.1). In conclusion, 8-weeks of RT and PLYO resulted in significant improvements in muscle strength and jump performance. RT appears to be more effective at eliciting increases in maximal strength while PLYO appears to enhance explosive strength, mediated by possible increases in the rate of muscle activation.
Resumo:
SUMMARY Background: Age related declines in lower extremity strength have been associated with impaired mobility and changes in gait patterns, which increase the likelihood of falls. Since community dwelling adults encounter a wide range of locomotor challenges including uneven and obstmcted walking surfaces, we examined the effect of a strength 11 and balance exercise program on obstructed walking in postmenopausal women. Objectives: This study examined the effect of a weighted-vest strength and balance exercise program on adaptations of the stance leg during obstacle walking in postmenopausal women. Methods: Eighteen women aged 44-62 years who had not engaged in regular resistance training for the past year were recruited from the St. Catharines community to participate in this study. Eleven women volunteered for an aerobic (walking), strength, and balance training program 3 times per week for 12 weeks while 7 women volunteered as controls. Measurements included: force platform dynamic balance measure of the center of pressure (COP) and ground reaction forces (GRFs) in the stance leg while going over obstacles of different heights (0,5, 10,25 and 30 cm); and isokinetic strength measures of knee and ankle extension and flexion. Results: Of the 18 women, who began the trial, 16 completed it. The EX group showed a significant increase of 40% in ankle plantar flexion strength (P < 0.05). However, no improvements in measures of COP or GRFs were observed for either group. Failure to detect any changes in measures of dynamic balance may be due to small sample size. Conclusions: Postmenopausal women experience significant improvements in ankle strength with 12 weeks of a weighted-vest balance and strength training program, however, these changes do not seem to be associated with any improvement in measures of dynamic balance.
Resumo:
BACKGROUND: Capillaries function to provide a surface area for nutrient and waste exchange with cells. The capillary supply of skeletal muscle is highly organized, and therefore, represents an excellent choice to study factors regulating diffusion. Muscle is comprised of three specific fibre types, each with specific contractile and metabolic characteristics, which influence the capillary supply of a given muscle; in addition, both environmental and genetic factors influence the capillary supply, including aging, physical training, and various disease processes. OBJECTIVE: The present study was undertaken to develop and assess the functionality of a data base, from which virtual experiments can be conducted on the capillary supply of human muscle, and the adaptations of the capillary bed in muscle to various perturbations. METHODS: To create the database, an extensive search of the literature was conducted using various search engines, and the three key words - "capillary, muscle, and human". This search yielded 169 papers from which the data for the 46 variables on the capillary supply and fibre characteristics of muscle were extracted for inclusion in the database. A series of statistical analyses (ANOVA) were done on the capillary database to examine differences in skeletal muscle capillarization and fibre characteristics between young and old individuals, between healthy and diseased individuals, and between untrained, endurance trained, endurance welltrained, and resistance trained individuals, using SAS. RESULTS: There was a significantly higher capillarization in the young compared to the old individuals, in the healthy compared to the diseased individuals, and in the endurance-trained and endurance well-trained compared to the untrained individuals. CONCLUSIONS: The results of this study support the conclusion that the capillary supply of skeletal muscle is closely regulated by factors aimed at optimizing oxygen and nutrient supply and/or waste removal in response to changes in muscle mass and/or metabolic activity.
Resumo:
Twenty-six sedentary, college-aged females were matched and randomly assigned to one of two groups. The massed group (n=13) completed 15 maximal isometric elbow flexion strength trials in one session, while the distributed group (n=13) performed five such contractions on three successive days. After a two-week and three month rest interval, both groups returned to perfonn another five maximal isometric elbow flexion strength trials to assess retention of any potential strength gains. Elbow flexion torque and surface electromyography (SEMG) of the biceps and triceps were monitored concurrently. There was a significant (P < 0.05) increase in strength in both groups from block one (first five contractions) to block four (first retest) and from block one to block five (second retest). Both groups exhibited a similar linear increasing (P < 0.05) trend in biceps root-mean-square (RMS) SEMG amplitude. A significant (P < 0.05) decrease in triceps RMS SEMG amplitude was found between block one and block four for the distributed group. However, a significant (P < 0.05) increase was then found between block one and five for the massed group, and between blocks four and five for distributed group. These results suggest that there is flexibility in resistive exercise schedules. An increase in neural drive to the agonist muscle continued throughout testing. This was accompanied by a reduction in antagonist co activation that was a short-tenn (two weeks) training effect, dissipated over the longer rest interval (three months).
Resumo:
During maturation, muscle strength is enhanced through muscle growth, although neuro-muscular factors are also believed to be involved. In adults, training for power sports has been shown to enhance muscle strength and activation. The purpose of this study was to examine muscle strength and activation in power-trained athletes (POW) compared with non-athletes (CON), in boys and in adults. After familiarization subjects performed ten 5-s explosive maximal voluntary contractions for elbow and knee flexion and extension. The adults were stronger then the boys and the adult POW were stronger then the adult CON, even after correction for muscle size. Normalized rate of torque development was higher in the adults then in the boys and higher in the POW then CON boys. The rate of muscle activation was higher in the adults and POW groups. The results suggest that maturation and power-training have an additive effect on muscle activation.
Resumo:
Many position stands and review papers have refuted the myths associated with resistance training (RT) in children and adolescents. With proper training methods, RT for children and adolescents can be relatively safe and improve overall health. The objective of this position paper and review is to highlight research and provide recommendations in aspects of RT that have not been extensively reported in the pediatric literature. In addition to the well-documented increases in muscular strength and endurance, RT has been used to improve function in pediatric patients with cystic fibrosis, cerebral palsy and burn victims. Increases in children’s muscular strength have been attributed primarily to neurological adaptations due to the disproportionately higher increase in muscle strength than in muscle size. Although most studies using anthropometric measures have not shown significant muscle hypertrophy in children, more sensitive measures such as magnetic resonance imaging and ultrasound have suggested hypertrophy may occur. There is no minimum age for RT for children. However the training and instruction must be appropriate for children and adolescents involving a proper warm-up, cool-down and an appropriate choice of exercises. It is recommended that low-to-moderate intensity resistance should be utilized 2-3 times per week on non-consecutive days, with 1-2 sets initially, progressing to 4 sets of 8-15 repetitions for 8-12 exercises. These exercises can include more advanced movements such as Olympic style lifting, plyometrics and balance training, which can enhance strength, power, co-ordination and balance. However specific guidelines for these more advanced techniques need to be established for youth. In conclusion, a RT program that is within a child’s or adolescent’s capacity, involves gradual progression under qualified instruction and supervision with appropriately sized equipment can involve more advanced or intense RT exercises which can lead to functional (i.e. muscular strength, endurance, power, balance and co-ordination) and health benefits.