1 resultado para Recht.
em Brock University, Canada
Resumo:
The present study has both theoretical and practical aspects. The theoretical intent of the study was to closely examine the relationship between muscle activity (EMG) and EEG state during the process of falling asleep. Sleep stages during sleep onset (SO) have been generally defined with regards to brain wave activity (Recht schaff en & Kales (1968); and more precisely by Hori, Hayashi, & Morikawa (1994)). However, no previous study has attempted to quantify the changes in muscle activity during this same process. The practical aspect of the study examined the reliability ofa commercially developed wrist-worn alerting device (NovAlert™) that utilizes changes in muscle activity/tension in order to alert its user in the event that he/she experiences reduced wakefulness that may result in dangerous consequences. Twelve female participants (aged 18-42) sp-ent three consecutive nights in the sleep lab ("Adaptation", "EMG", and "NOVA" nights). Each night participants were given 5, twenty-minute nap opportunities. On the EMG night, participants were allowed to fall asleep freely. On the NOV A night, participants wore the Nov Alert™ wrist device that administered a Psychomotor Vigilance Test (PVT) when it detected that muscle activity levels had dropped below baseline. Nap sessions were scored using Hori's 9-stage scoring system (Hori et aI, 1994). Power spectral analyses (FFT) were also performed. Effects ofthe PVT administration on EMG and EEG frequencies were also examined. Both chin and wrist EMG activity showed reliable and significant decline during the early stages ofHori staging (stages HO to H3 characterized by decreases in alpha activity). All frequency bands studied went through significant changes as the participants progressed through each ofHori's 9 SO stages. Delta, theta, and sigma activity increased later in the SO continuum while a clear alpha dominance shift was noted as alpha activity shifted from the posterior regions of the brain (during Hori stages HO to H3) to the anterior portions (during Hori stages H7 to H9). Administration of the PVT produced significant increases in EMG activity and was effective in reversing subjective drowsiness experienced during the later stages of sleep onset. Limitations of the alerting effects of the PVTs were evident following 60 to 75 minutes of use in that PVTs delivered afterwards were no longer able to significantly increase EMG levels. The present study provides a clearer picture of the changes in EMG and EEG during the sleep onset period while testing the efficacy of a commercially developed alerting device. EMG decreases were found to begin during Hori stage 0 when EEG was - dominated by alpha wave activity and were maximal as Hori stages 2 to 5 were traversed (coincident with alpha and beta activity). This signifies that EMG decrements and the loss of resting alpha activity are closely related. Since decreased alpha has long been associated with drowsiness and impending sleep, this investigation links drops in muscle tone with sleepiness more directly than in previous investigations. The EMG changes were reliably demonstrated across participants and the NovAlert™ detected the EMG decrements when Hori stage 3 was entered. The alerting vibrations produced by the NovAlert™ occurred early enough in the SO process to be of practical importance as a sleepiness monitoring and alerting device.