5 resultados para Reaction function

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GAB A) is a ubiquitous non-protein amino acid synthesized via the decarboxylation of L-glutamate in a reaction catalyzed by the cytosolic enzyme L-glutamate decarboxylase (GAD). In animals it functions as an inhibitory neurotransmitter. In plants it accumulates rapidly in response to various stresses, but its function remains unclear. The hypothesis that GABA accumulation in leaf tissue may function as a plant resistance mechanism against phytophagous insect activity was investigated. GABA accumulation in response to mechanical stimulation, mechanical damage and insect activity was demonstrated. In wt tobacco (Nicotiana tabacum cv Samsun), mechanical stimulation or damage caused GABA to accumulate within 2 min from mean levels of 14 to 37 and 1~9 nmol g-l fresh weight (FW), respectively. In the transgenic tobacco strain CaMVGAD27c overexpressing Petunia GAD, the same treatments caused GABA to accumulate from 12 to 59 and 279 nmol g-l FW, respectively. In the transgenic tobacco strain CaMVGADilC 11 overexpressing Petunia GAD lacking an autoinhibitory domain, mechanical stimulation or damage caused GABA to accumulate from 180 to 309 and 630 nmol g-l FW, respectively. Ambulatory activity by tobacco budworm (TBW) larvae (Heliothis virescens) on leaves of CaMVGAD27c tobacco caused GABA to accumulate from 28 to 80 nmol g-l FW within 5 min. Ambulatory and leaf-rolling activity by oblique banded leaf roller (OBLR) larvae (Choristoneura rosaceana cv Harris) on wt soybean leaves (Glycine max cv Harovinton) caused GABA to accumulate from 60 to 1123 nmol g-l FW within 20 min. Increased GABA levels in leaf tissue were shown to affect phytophagous preference in TBW larvae presented with wt and transgenic tobacco leaves. When presented with leaves of Samsun wt and CaMVGAD27c plants, TBW larvae consumed more wt leaf tissue (640 ± 501 S.D. mm2 ) than transgenic leaf tissue (278 ± 338 S.D. mm2 ) nine times out of ten. When presented with leaves of Samsun wt and CaMVGAD~C11 plants, TBW larvae consumed more transgenic leaf tissue (1219 ± 1009 S.D. mm2 ) than wt leaf tissue (28 ± 31 S.D. mm2 ) ten times out of ten. These results indicate that: (1) ambulatory activity of insect larvae on leaves results in increased GABA levels, (2) transgenic tobacco leaves with increased capacity for GABA synthesis deter feeding, and (3) transgenic tobacco leaves with constitutively higher GABA levels stimulate feeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Daytime napping improves well-being and performance for young adults. The benefits of napping in older adults should be investigated because they have fragmented nocturnal sleep, cognitive declines, and more opportunity to nap. In addition, experience with napping might influence the benefits of napping. Study 1 examined the role of experience with napping in young adults. Habitual (n = 23) and non-habitual nappers (n = 16) were randomly assigned to a 20-minute nap or a 20- minute reading condition. Both groups slept the same according to macro architecture. However, microarchitecture showed greater theta, alpha, and beta power during Stage 1, and greater delta, alpha, and sigma power during Stage 2 for habitual nappers, for the most part indicating better sleep. Both groups felt less sleepy after the nap. P2 latency, reflecting information processing, decreased after the nap for habitual nappers, and after the control condition for non-habitual nappers. In sum, both groups who slept felt better, but only the habitual nappers who napped gained a benefit in terms of information processing. Based on this outcome, experience with napping was investigated in Study 2. Study 2 examined the extent to which daytime napping enhanced cognition in older adults, especially frontal lobe function. Cognitive deficits in older adults may be due to sleep loss and age-related decline in brain functioning. Longer naps were expected to provide greater improvement, particularly for older adults, by reducing sleep pressure. Thirty-two adults, aged 24-70 years, participated in a repeated measures dose-response manipulation of sleep pressure. Twenty- and sixty-minute naps were compared to a no-nap condition in three age groups. Mood, subjective sleepiness, reaction time, working memory, 11 novelty detection, and waking electro physiological measures were taken before and after each condition. EEG was also recorded during each nap or rest condition. Napping reduced subjective sleepiness, improved working memory (serial addition / subtraction task), and improved attention (reduced P2 amplitude). Physiological sleepiness (i.e., waking theta power) increased following the control condition, and decreased after the longer nap. Increased beta power after the short nap, and seen with older adults overall, may have reflected increased mental effort. Older adults had longer latencies and smaller amplitudes for several event-related potential components, and higher beta and gamma power. Following the longer nap, gamma power decreased for older adults, but increased for young adults. Beta and gamma power may represent enhanced alertness or mental effort. In addition, Nl amplitude showed that benefits depend on the preceding nap length as well as age. Since the middle group had smaller Nl amplitudes following the short nap and rest condition, it is possible that they needed a longer nap to maintain alertness. Older adults did not show improvements to Nl amplitude following any condition; they may have needed a nap longer than 60 minutes to gain benefits to attention or early information processing. Sleep characteristics were not related to benefits of napping. Experience with napping was also investigated. Subjective data confirmed habitual nappers were happier to nap, while non-habitual nappers were happier to stay awake, reflecting self-identified napping habits. Non-habitual nappers were sleepier after a nap, and had faster brain activity (i.e., heightened vigilance) at sleep onset. These reasons may explain why non-habitual nappers choose not to nap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The natural abundance of the N-heterocycle containing compounds has pushed the synthetic community toward the invention of new synthetic methods that result in the structural diversity of N-heterocycles. Among this, is the efficient and highly selective diamine mediated asymmetric lithiation process. Amongst the diamine chiral ligands, (-)-sparterine, which is a naturally occurring alkaloid proved to be an efficient one. Many successful, good yielding and highly selective lithiation reactions have been accomplished with the mediation by this chiral diamine base. Although, there are some examples of experimental and theoretical mechanistic studies in the literature, there is a lack of detailed understanding as to how it exactly induces the chirality. In this thesis is described a systematic investigation of how (-)-sparteine influences the stereoselectivity in the course of asymmetric lithiation reaction. This led us to the establishment of the function of A-ring’s β-CH2 effect and D-ring effect. Consequently, the importance of the A-ring and D-ring portions of (-)-sparteine in the stereoselectivity is unraveled. Another part of this thesis deals with the asymmetric lithiation of BF3-activated N,N- dimethylaminoferrocene in the presence of (1R, 2R)-N1,N2-bis(3,3-dimethylbutyl)-N1,N2-dimethylcyclohexane-1,2-diamine ( a (R,R)-TMCDA surrogate) with i-PrLi. Computational findings were in full accord with the experimental observations. Subsequently, the theoretically provided insights into the mechanism of the reaction were exploited in computational design of a new ligand. Unfortunately, the outcome of this design was not experimentally robust and an updated approach towards a successful design was explained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging studies have shown reduced frontal lobe resources following total sleep deprivation (TSD). The anterior cingulate cortex (ACC) in the frontal region plays a role in performance monitoring and cognitive control; both error detection and response inhibition are impaired following sleep loss. Event-related potentials (ERPs) are an electrophysiological tool used to index the brain's response to stimuli and information processing. In the Flanker task, the error-related negativity (ERN) and error positivity (Pe) ERPs are elicited after erroneous button presses. In a Go/NoGo task, NoGo-N2 and NoGo-P3 ERPs are elicited during high conflict stimulus processing. Research investigating the impact of sleep loss on ERPs during performance monitoring is equivocal, possibly due to task differences, sample size differences and varying degrees of sleep loss. Based on the effects of sleep loss on frontal function and prior research, it was expected that the sleep deprivation group would have lower accuracy, slower reaction time and impaired remediation on performance monitoring tasks, along with attenuated and delayed stimulus- and response-locked ERPs. In the current study, 49 young adults (24 male) were screened to be healthy good sleepers and then randomly assigned to a sleep deprived (n = 24) or rested control (n = 25) group. Participants slept in the laboratory on a baseline night, followed by a second night of sleep or wake. Flanker and Go/NoGo tasks were administered in a battery at 1O:30am (i.e., 27 hours awake for the sleep deprivation group) to measure performance monitoring. On the Flanker task, the sleep deprivation group was significantly slower than controls (p's <.05), but groups did not differ on accuracy. No group differences were observed in post-error slowing, but a trend was observed for less remedial accuracy in the sleep deprived group compared to controls (p = .09), suggesting impairment in the ability to take remedial action following TSD. Delayed P300s were observed in the sleep deprived group on congruent and incongruent Flanker trials combined (p = .001). On the Go/NoGo task, the hit rate (i.e., Go accuracy) was significantly lower in the sleep deprived group compared to controls (p <.001), but no differences were found on false alarm rates (i.e., NoGo Accuracy). For the sleep deprived group, the Go-P3 was significantly smaller (p = .045) and there was a trend for a smaller NoGo-N2 compared to controls (p = .08). The ERN amplitude was reduced in the TSD group compared to controls in both the Flanker and Go/NoGo tasks. Error rate was significantly correlated with the amplitude of response-locked ERNs in control (r = -.55, p=.005) and sleep deprived groups (r = -.46, p = .021); error rate was also correlated with Pe amplitude in controls (r = .46, p=.022) and a trend was found in the sleep deprived participants (r = .39, p =. 052). An exploratory analysis showed significantly larger Pe mean amplitudes (p = .025) in the sleep deprived group compared to controls for participants who made more than 40+ errors on the Flanker task. Altered stimulus processing as indexed by delayed P3 latency during the Flanker task and smaller amplitude Go-P3s during the Go/NoGo task indicate impairment in stimulus evaluation and / or context updating during frontal lobe tasks. ERN and NoGoN2 reductions in the sleep deprived group confirm impairments in the monitoring system. These data add to a body of evidence showing that the frontal brain region is particularly vulnerable to sleep loss. Understanding the neural basis of these deficits in performance monitoring abilities is particularly important for our increasingly sleep deprived society and for safety and productivity in situations like driving and sustained operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaredoxins are oxidoreductases capable of reducing protein disulfide bridges and glutathione mixed disulfides through the process of deglutathionylation and glutathionylation. Lately, redox-mediated modifications of functional cysteine residues of TGA1 and TGA8 transcription factors have been postulated. Namely, GRX480 and ROXY1 glutaredoxins have been previously shown to interact with TGA proteins and have been suggested to regulate redox state of these proteins. TGA1, together with TGA2, is involved in systemic acquired resistance (SAR) establishment in the plant Arabidopsis thaliana through PR1 (Pathogenesis related 1) gene activation. They both form an enhanceosome complex with the NPR1 protein (non-expressor of pathogenesis related gene 1) which leads to PR1 transcription. Although TGA1 is capable of activating PR1 transcription, the ability of the TGA1 NPR1 enhanceosome complex to assembly is based on the redox status of TGA1. We identified GRX480 as a glutathionylating enzyme that catalyzes the TGA1 glutathione disulfide transferase reaction with a Km of around 20μM GSSG (oxidized glutathione). Out of four cysteine residues found within TGA1, C172 and C266 were found to be glutathionylated by this enzyme. We also confirmed TGA1 glutathionylation in vivo and showed that this modification takes place while TGA1 is associated with the PR1 promoter enzymatically via GRX480. Furthermore, we show that glutathionylation via GRX480 abolishes TGA1's interaction with NPR1 and consequently prevents the TGA1-NPR1 transcription activation of PR1. When glutathionylated, TGA1 is recruited to the PR1 promoter and acts as a repressor. Therefore, glutathionylation is a mechanism that prevents TGA1 NPR1 interaction, allowing TGA1 to function as a repressor of PR1 transcription. Surprisingly, GRX480 was not able to deglutathionylate proteins demonstrating the irreversible nature of the reaction. Moreover, we demonstrate that other members of CC-class glutaredoxins, namely ROXY1 and ROXY2, can also catalyze protein glutathionylation. The TGA8 protein was previously shown to interact with NPR1 analogs, BOP1 and BOP2 proteins. However, unlike the case of TGA1 NPR1 interaction, here we demonstrate that TGA8-BOP1 interaction is not redox regulated and that TGA8 glutathionylation by ROXY1 and ROXY2 enzymes does not abolish this interaction in vitro. However, TGA8 glutathionylation results in TGA8 oligomer disassembly into smaller complexes and monomers. Our results suggest that CC-Grxs are unable to reduce mixed disulfides, instead they efficiently catalyze the opposite reaction which distinguishes them from traditional glutaredoxins. Therefore, they should not be classified as glutaredoxins but as protein glutathione disulfide transferases.