4 resultados para Radioactive pollution of the atmosphere

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In light of the heavy reliance of the people of the Niagara Peninsula on the T\\'elve Mile Creek (TMC) watershed for recreational activities and for municipal and industrial uses ( e.g., drinking water, shipping and discharge of effluents), it was deemed prudent to assess the envirol1tnental health of the system by analysing the sediments total and exchangeable metal, and TPH contents. The MOEE has set guidelines with limits for the protection and management of aquatic sediments, and the sediments from the headwaters of the TMC have total metal and TPH (subset of O&G) contents well below the lower provincial limits. Areas of environmental concern where total metal contents in sediments, either individually or collectively, exceed the guideline, are the south side of Lake Gibson, the Old WeIland Canal, a segment of TMC just south of the QEW and Martindale Pond. The total metal content of sediments does not in all instances identify areas of biological concern. Instead, it has been found that the exchangeable metal fraction of sediments is a better indicator of metal availability and thus potential accumulation in organisms. In some instances, the exchangeable metal fraction agrees with the total metal fraction defining areas of environmental concern, but it does vary from site to site reflecting the natural variability of the ambient environment. Overall, the exchangeable metal fraction of sediments appears to be a better indicator of anthropogenic pollution and ecosystem impact. A histochemical study of Anodon.ta sp., Elliptio sp. and zebra mussels (Dreissena polyn'101pha) was done in conjunction with passive biomonitoring of zebra and quagga mussels (Dreissena bugensis) from the Twelve Mile Creek watershed and Lake 51. Clair (Jeanette's Creek, Chatham, Ontario). The highest concentrations of divalent metals such as Cu, Ni, Cd, and Zn, and trivalent Al appear to accumulate in gill and kidney tissues. Metal contents of organ tissues in Anodonta sp. vary with size class. Organ metal content varies among size classes, thus requiring consideration of size in biomonitoring studies. Shucked zebra and quagga mussel tissues, exhibited similar size class to Al content trends. In addition they reflected the Al content trends of top (approximately 10 cm) most sediments in the Twelve Mile Creek watershed. Quagga mussels appear to have higher Al concentrations than zebra mussels, thus suggesting that quagga mussels may be better passive biomonitors of AI. Cd content in zebra mussel tissues, seemed to increase with size class trends. This was not demonstrated in the quagga mussel tissues. This suggests that Cd may be regulated by quagga mussels and not by zebra mussels, and that zebra mussels may be better passivebiomonitors of Cd than are quagga mussels. Zebra mussel, quagga mussel, Anodonta sp., and Elliptio sp. were used in a two part, active (translocated) biomonitoring study of the Twelve Mile Creek watershed. There was no statistical difference in death rates between zebra and quagga mussels after 65 days of biomonitoring. However there does appear to be a difference of death rates between sites. Unfortunately the data base did not permit us to differentiate between sites. Relative to Port Colborne Harbour (Port Colborne, Ontario), the Twelve Mile Creek watershed appears to be elevated in bioavailable AI. An area near the terminus of the Twelve Mile Creek appears to be an area of environmental concern since mussels seemed to have accumulated relatively large concentrations of Cd, Zn, and Pb. In addition to possible metal loading from a nearby outfalls, or possible upstream outfalls, road salt runoff from storm sewers may have contributed to metal accumulation through cation exchanges processes. Similar trends in cumulative quagga mussel metal concentrations during the two time periods (65 and 159 days), suggest that quagga mussels may reach equilibrium within 65 days of translocation. Differences in bioaccumulated metal concentrations of the two dreissenid species demonstrate that active biomonitoring studies must use a variety of organisms to adequately assess the environmental situation of specific waterways and/or bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In light of the fact that literature on toxicity of heavy metals in non-acidified freshwater systems is sparse, this project was initiated to conduct an environmental assessment of Lake Gibson. Chemistry of soils from adjacent areas and vineyards in the region provide a comparative background database. Water quality determinations were used to identify and highlight areas of environmental concern within the Lake Gibson watershed. A Shelby Corer was used to obtain 66 sediment cores from Lake Gibson. These were sectioned according to lithology and color to yield 298 samples. A suite of 122 soil samples was collected in the region and vicinity of Lake Gibson. All were tested for metals and some for Total Petroleum Hydrocarbons (TPH). Evaluation of the results leads to the following conclusions: 1. Metal concentrations ofAI, Cd, Cu, Cr, Pb, Ni, Fe and Zn in soils from the Niagara Region are well below background limits set by the Ministry of the Environment and Energy (MOEE) for provincial soils. 2. There is a spatial and depth difference for some of the metals within the various soils. The Cr, Ni and Pb contents of soils vary throughout the region (pThe Ni contents of sediments from Lake Gibson fall below the LEL (Lower Effect Level) guideline specified by the MOEE for aquatic ecosystems. 4. All other metal contents exceed the LEL, and in some instances they also exceed the SEL (Severe Effect Level) guideline. In this instance acute toxicity testing of 11 the sediments is required to assess impact on the aquatic biota. 5. Specifically, effluents and discharges from outfalls, roadways, railways and industrial activities are all degrading the local ecosystem. 6. Mineral oil and greases are a major environmental concern in the sediments of Lake Gibson. Ofthe 240 samples tested for TPH, 200 samples exceed the MOEE Open Water Disposal Guideline of 1,500 mg/kg. 7. Four areas within Lake Gibson are especially degraded with respect to TPH. One area is just downstream from the Old WeIland Canal divergence point and waterfall. Other areas of concern are located just south of Beaverdams Road and just west ofthe Ontario Hydro control pipes; south ofthe Village ofBeaverdams. The fourth area of environmental concern and TPH impact is located between Highway 406 and Merrittville Highway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The site of present-day St. Catharines was settled by 3000 United Empire Loyalists at the end of the 18th century. From 1790, the settlement (then known as "The Twelve") grew as an agricultural community. St. Catharines was once referred to Shipman's Corners after Paul Shipman, owner of a tavern that was an important stagecoach transfer point. In 1815, leading businessman William Hamilton Merritt abandoned his wharf at Queenston and set up another at Shipman's Corners. He became involved in the construction and operation of several lumber and gristmills along Twelve Mile Creek. Shipman's Corners soon became the principal milling site of the eastern Niagara Peninsula. At about the same time, Merritt began to develop the salt springs that were discovered along the river which subsequently gave the village a reputation as a health resort. By this time St. Catharines was the official name of the village; the origin of the name remains obscure, but is thought to be named after Catharine Askin Robertson Hamilton, wife of the Hon. Robert Hamilton, a prominent businessman. Merritt devised a canal scheme from Lake Erie to Lake Ontario that would provide a more reliable water supply for the mills while at the same time function as a canal. He formed the Welland Canal Company, and construction took place from 1824 to 1829. The canal and the mills made St. Catharines the most important industrial centre in Niagara. By 1845, St. Catharines was incorporated as a town, with the town limits extending in 1854. Administrative and political functions were added to St. Catharines in 1862 when it became the county seat of Lincoln. In 1871, construction began on the third Welland Canal, which attracted additional population to the town. As a consequence of continual growth, the town limits were again extended. St. Catharines attained city status in 1876 with its larger population and area. Manufacturing became increasingly important in St. Catharines in the early 1900s with the abundance of hydro-electric power, and its location on important land and water routes. The large increase in population after the 1900s was mainly due to the continued industrialization and urbanization of the northern part of the city and the related expansion of business activity. The fourth Welland Canal was opened in 1932 as the third canal could no longer accommodate the larger ships. The post war years and the automobile brought great change to the urban form of St. Catharines. St. Catharines began to spread its boundaries in all directions with land being added five times during the 1950s. The Town of Merritton, Village of Port Dalhousie and Grantham Township were all incorporated as part of St. Catharines in 1961. In 1970 the Province of Ontario implemented a regional approach to deal with such issues as planning, pollution, transportation and services. As a result, Louth Township on the west side of the city was amalgamated, extending the city's boundary to Fifteen Mile Creek. With its current population of 131,989, St. Catharines has become the dominant centre of the Niagara region. Source: City of St. Catharines website http://www.stcatharines.ca/en/governin/HistoryOfTheCity.asp (January 27, 2011)