3 resultados para RB Patología
em Brock University, Canada
Resumo:
The Pater metavolcanic suite (PVS) was extruded as part O'f the basal Pater Formation of the Huronian Supergroup ca. 2.4 Ga. They Ars classified as wi thin-plate tholeiites associated with an immature ri-fting episode, and are inter layered with associated vol cani clastic and metasedimentary units. Post-solidif ication alteration caused redistribution o-f the alkalies, Sr, Rb, Ba, Cu, and SiO^. Ce, Y, Zr, CFezOs (as total Fe), Al^Os, TiOa, and, PaOa are considered to have remained essentially immobile in least altered samples. Petrogenetic modelling indicates the PVS was derived from the partial melting of two geochemical ly similar sources in the sub-continental lithosphere. Fractionation was characterized by an oli vine-plagioclase assemblage and a sub-volcanic plagioclase-clinopyroxene assemblage. A comparative study indicates that enrichment of the postulated Huronian source cannot be reconciled by Archean contamination. Enrichment is thought to have been caused by hydrous veined metasomatic heterogeneities in the sub-continental lithosphere, generated by an Archean subduct ion event before 2.68 Ga.
Resumo:
Core samples of postglacial sediments and sediment surface samples from Shepherd Lake on the Bruce Peninsula, Harts Lake on the Canadian Shield, and two cores from Georgian Bay (core P-l in the western deep part and core P-7 in the eastern shallow part) have been analyzed for pH, grain size distribution, water content, bulk density, loss on ignition at 4500C and 11000 C, major oxides (Si02 ,A1203,!FeO,MgO,CaO, Na20,K20,Ti02 ,MnO and P205) and trace elements (Ba,Zr,Sr,y,S, Zn,Cu,Ni,Ce and Rb). The sediment in Georgian Bay are generally fine grained (fine silt to very fine silty clay) and the grain size decreases from the Canadian Shield (core p-7) towards the Bruce Peninsula (core P-l) along the assumed direction of sediment transport. This trend coincides with a decrease in sorting coefficient and an increase in roundness. Other physical characteristics, such as water content, bulk density and loss on ignition are positively correlated with the composition of sediments and their compaction, as well as with the energy of the depositional environment. Analyses of sediment surface samples from Shepherd Lake and Harts Lake indicate the influence of bedrock and surficial deposits in the watershed on pH condition that is also influenced by the organic matter content and probably I ! I man's activities. Organic matter content increases significantly in the surface sediment in these small lakes as a result of either natural eutrophication or anthropogenic organic loading. The extremely high organic matter content in Shepherd Lake sediment indicates rapid natural eutrophication in this closed basin and high biological productivity during postglacial time, probably due to high nutrient levels and shallow depth. The chemical composition of the Canadian Shield bedrock is positively correlated with the chemical characteristics of predominantly inorganic lake sediments that were derived from the Shield rocks by glacial abrasion and by postglacial weathering and erosion of both bedrock and surficial deposits. High correlation coefficients were found between organic matter in lake sediments and major oxides (Si02,AI203,.~FeO, MgO,CaO,K20 and MnO) , as well as some trace elements (Ba,Y, S,Zn,Cu,Ni and Rb). The chemical composition of sediments in Harts Lake and core P-7 in Georgian Bay on the Canadian Shield differs from the chemistry of sediments in Shepherd Lake and core P-l in Georgian Bay on the Bruce Peninsula. The difference between cores P-l and P-7 is indicated by values of Si02 , AI203 ,:LFeo,Mgo,CaO,Ba,Zr,Sr,y and S, and also by the organic matter content. This study indicates that the processes of sediment transport, depositional environment, weathering of the rocks and surficial deposits in the watershed, as well as chemical composition of source rocks all affect the chemical characteristics of lake sediments. The stratigraphic changes and variations in lake sediment chemistry with regard to major oxides, trace elements, and organic matter content are probably related to the history of glacial and postglacial lake stages of the Georgian Bay Region and, therefore, the geochemical data can make a useful contribution to a better understanding of the Late-Quaternary history of the Great Lakes.
Resumo:
Immobilized lipase B from Candida antarctica (Novozym® 435, N435) was utilized as part of a chemoenzymatic strategy for the synthesis of branched polyesters based on a cyclotetrasiloxane core in the absence of solvent. Nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were utilized to monitor the reactions between tetraester cyclotetrasiloxanes and aliphatic diols. The enzyme-mediated esterification reactions can achieve 65– 80% consumption of starting materials in 24–48 h. Longer reaction times, 72–96 h, resulted in the formation of cross-linked gel-like networks. Gel permeation chromatography of the polymers indicated that the masses were Mw ¼ 11 400, 13 100, and 19 400 g mol 1 for the substrate pairs of C7D4 ester/ octane-1,8-diol, C10D4 ester/pentane-1,5-diol and C10D4 ester/octane-1,8-diol respectively, after 48 h. Extending the polymerization for an additional 24 h with the C10D4 ester/octane-1,8-diol pair gave Mw ¼ 86 800 g mol 1. To the best of our knowledge this represents the first report using lipase catalysis to produce branched polymers that are built from a cyclotetrasiloxane core.