4 resultados para Quantum computational complexity
em Brock University, Canada
Resumo:
The prediction of proteins' conformation helps to understand their exhibited functions, allows for modeling and allows for the possible synthesis of the studied protein. Our research is focused on a sub-problem of protein folding known as side-chain packing. Its computational complexity has been proven to be NP-Hard. The motivation behind our study is to offer the scientific community a means to obtain faster conformation approximations for small to large proteins over currently available methods. As the size of proteins increases, current techniques become unusable due to the exponential nature of the problem. We investigated the capabilities of a hybrid genetic algorithm / simulated annealing technique to predict the low-energy conformational states of various sized proteins and to generate statistical distributions of the studied proteins' molecular ensemble for pKa predictions. Our algorithm produced errors to experimental results within .acceptable margins and offered considerable speed up depending on the protein and on the rotameric states' resolution used.
Resumo:
In Part I, theoretical derivations for Variational Monte Carlo calculations are compared with results from a numerical calculation of He; both indicate that minimization of the ratio estimate of Evar , denoted EMC ' provides different optimal variational parameters than does minimization of the variance of E MC • Similar derivations for Diffusion Monte Carlo calculations provide a theoretical justification for empirical observations made by other workers. In Part II, Importance sampling in prolate spheroidal coordinates allows Monte Carlo calculations to be made of E for the vdW molecule var He2' using a simplifying partitioning of the Hamiltonian and both an HF-SCF and an explicitly correlated wavefunction. Improvements are suggested which would permit the extension of the computational precision to the point where an estimate of the interaction energy could be made~
Resumo:
This work investigates mathematical details and computational aspects of Metropolis-Hastings reptation quantum Monte Carlo and its variants, in addition to the Bounce method and its variants. The issues that concern us include the sensitivity of these algorithms' target densities to the position of the trial electron density along the reptile, time-reversal symmetry of the propagators, and the length of the reptile. We calculate the ground-state energy and one-electron properties of LiH at its equilibrium geometry for all these algorithms. The importance sampling is performed with a single-determinant large Slater-type orbitals (STO) basis set. The computer codes were written to exploit the efficiencies engineered into modern, high-performance computing software. Using the Bounce method in the calculation of non-energy-related properties, those represented by operators that do not commute with the Hamiltonian, is a novel work. We found that the unmodified Bounce gives good ground state energy and very good one-electron properties. We attribute this to its favourable time-reversal symmetry in its target density's Green's functions. Breaking this symmetry gives poorer results. Use of a short reptile in the Bounce method does not alter the quality of the results. This suggests that in future applications one can use a shorter reptile to cut down the computational time dramatically.
Resumo:
Photosynthesis is a process in which electromagnetic radiation is converted into chemical energy. Photosystems capture photons with chromophores and transfer their energy to reaction centers using chromophores as a medium. In the reaction center, the excitation energy is used to perform chemical reactions. Knowledge of chromophore site energies is crucial to the understanding of excitation energy transfer pathways in photosystems and the ability to compute the site energies in a fast and accurate manner is mandatory for investigating how protein dynamics ef-fect the site energies and ultimately energy pathways with time. In this work we developed two software frameworks designed to optimize the calculations of chro-mophore site energies within a protein environment. The first is for performing quantum mechanical energy optimizations on molecules and the second is for com-puting site energies of chromophores in a fast and accurate manner using the polar-izability embedding method. The two frameworks allow for the fast and accurate calculation of chromophore site energies within proteins, ultimately allowing for the effect of protein dynamics on energy pathways to be studied. We use these frame-works to compute the site energies of the eight chromophores in the reaction center of photosystem II (PSII) using a 1.9 Å resolution x-ray structure of photosystem II. We compare our results to conflicting experimental data obtained from both isolat-ed intact PSII core preparations and the minimal reaction center preparation of PSII, and find our work more supportive of the former.