1 resultado para QUASI-CRYSTALLINE ALLOY

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monte Carlo Simulations were carried out using a nearest neighbour ferromagnetic XYmodel, on both 2-D and 3-D quasi-periodic lattices. In the case of 2-D, both the unfrustrated and frustrated XV-model were studied. For the unfrustrated 2-D XV-model, we have examined the magnetization, specific heat, linear susceptibility, helicity modulus and the derivative of the helicity modulus with respect to inverse temperature. The behaviour of all these quatities point to a Kosterlitz-Thouless transition occuring in temperature range Te == (1.0 -1.05) JlkB and with critical exponents that are consistent with previous results (obtained for crystalline lattices) . However, in the frustrated case, analysis of the spin glass susceptibility and EdwardsAnderson order parameter, in addition to the magnetization, specific heat and linear susceptibility, support a spin glass transition. In the case where the 'thin' rhombus is fully frustrated, a freezing transition occurs at Tf == 0.137 JlkB , which contradicts previous work suggesting the critical dimension of spin glasses to be de > 2 . In the 3-D systems, examination of the magnetization, specific heat and linear susceptibility reveal a conventional second order phase transition. Through a cumulant analysis and finite size scaling, a critical temperature of Te == (2.292 ± 0.003) JI kB and critical exponents of 0:' == 0.03 ± 0.03, f3 == 0.30 ± 0.01 and I == 1.31 ± 0.02 have been obtained.