3 resultados para Pyrrolidine
em Brock University, Canada
Resumo:
The work in this thesis mainly deals with l,l-enediamines and ~ -substituted enamines (push-pull olefines) and their reactions, leading to the formation of a number of heterocycles. Various ~-substituted enamines were prepared by a 'one pot synthesis' in which a l,l-enediamine presumably acts as an intermediate. These enamines, various substituted crotonamides and propenamides, were made by using two different orthoesters, various secondary and primary amines and cyanoacetamide. Their structures, mechanism of formation and geometry are discussed. A synthetic route to various unsymmetrically substituted pyridines was examined. Two substituted pyridinones were obtained by using two different ~-substituted enamines and cyanoacetamide. In one case a dihydropyridine was isolated. This dihydropyridine, on heating in acidic conditions, gave a pyridinone, which confirmed this dihydropyridine as an intermediate in this pyridine synthesis. A new synthetic method was used to make highly substituted pyridinones, which involved the reaction of l,l-enediamines with the ~-substituted enamines. A one pot synthesis and an interrupted one pot synthesis were used to make these pyridinones. Two different orthoesters and three different secondary amines were used. Serendipitous formation of a pyrimidinone was observed when pyrrolidine was used as the secondary amine and triethyl orthopropionate was used as the orthoester. In all cases cyanoacetamide was used as the carbon acid. This pyridine synthesis was designed with aI, l-enediamine as the Michael donor and the ~ -substituted enamines as Michael acceptors. Substituted ureas were obtained in two cases, which was a surprise. Some pyrimidines were made by reacting two substituted enamines with two different amidines. When benzamidine was used, the expected pyrimidines were obtained. But, when 2-benzyl-2-thiopseudourea (which is also an amidine) was used, of the two expected pyrimidines, only one was obtained. In the other case, an additional substitution reaction took place in which the S-benzyl group was lost. An approach to quinazolone and benzothiadiazine synthesis is discussed. Two compounds were made from 1, I-dimorpholinoethene
Resumo:
Compounds containing the pyrrolidine moiety are key substructures of compounds with biological activity and organocatalysts. In particular, annulated chiral pyrrolidines with alpha stereogenic centers have aldostereone synthase inhibition activity. In addition, 5-substituted pyrroloimidazol(in)ium salts precursors to N-heterocyclic carbene (NHC) precatalysts are rare due to a lack of convenient synthetic routes to access them. In this thesis is described a rapid synthesis of NHC precursors and a possible route to 5-substituted pyrroloimidazole biologically active compounds. The method involves the preparation of chiral saturated and achiral unsaturated pyrrolo[I,2- c]imidazol-3-ones from N-Cbz-protected t-Butyl proline carboxamide. The resulting starting materials may be used to prepare the target chiral annulated imidazol(in)ium products by a two-step sequence involving first stereoselective lithiation-substitution, followed by POCh induced salt formation.
Resumo:
Iridium complexes with bidentate P,N ligands represent a class of catalysts that significantly expand the application range of asymmetric hydrogenation. New substrate classes, for which there have previously been no suitable catalysts, can now be efficiently hydrogenated in high conversion and enantioselectivity. These substrates are often of synthetic importance, thus iridium catalysis represents a significant advance in the field of asymmetric catalysis. Planar chiral ferrocenyl aminophosphine ligands in which both heteroatoms were directly bound to the cyclopentadienyl ring were prepared by BF3-activated lithiationsubstitution in the presence of a chiral diamine in 49-59% yield and 75-85% enantiomeric excess. Some of these ligands were recrystallized to enantiomeric purity via ammonium fluoroborate salt formation of the phosphine sulfide. A crystal structure of one of these compounds was obtained and features an intramolecular hydrogen bond between the nitrogen, hydrogen, and sulfur atoms. Neutralization, followed by desulfurization, provided the free ligands in enantiomeric purity. Iridium complexes with these ligands were formed via reaction with [Ir(COD)Clh followed by anion exchange with NaBArF. These complexes were successfully applied in homogeneous hydrogenation of several prochiral substrates, providing products in up to 92% enantiomeric excess. Variation of the dimethyl amino group to a pyrrolidine group had a negative effect on the selectivity of hydrogenation. Variation of the substituents on phosphorus to bulkier ortho-tolyl groups had a positive effect, while variation to the more electron rich dicyclohexyl phosphine had a negative effect on selectivity.