6 resultados para Protein-i

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Botrytis cinerea isolates collected from Niagara region were treated with different concentrations of the fiingicide, iprodione to test their sensitivity to this fungicide. These Botrytis cinerea isolates were divided into two groups according to their sensitivity to iprodione. Those isolates whose growth was inhibited by iprodione at concentrations < 2|i,g/nil were classified as sensitive isolates. Isolates that were able to show considerable growth at 2|j,g/ml iprodione were classified as resistant isolates. Resistant and sensitive isolates were compared for their morphological and growth characteristics, conidial germination, virulence on grape berries and protein banding profiles. The fungicide iprodione at a concentration of 2|xg/nil inhibited mycelial growth, sporulation and conidial germination of sensitive isolates but not those of resistant isolates. The inhibitory effect of the fungicide was greater on mycelial growth than on conidia germination of the sensitive isolates. Sensitive isolates produced no sclerotia whereas resistant isolates produced large number of sclerotia. The fungicide iprodione affected sclerotial production in the resistant isolates. The number of sclerotia was decreased by the increase of iprodione in the medium. Sporulation of resistant isolates was improved significantly in the presence of iprodione. The resistant isolates were as virulent as the sensitive isolates on grape berries. The sensitive and resistant isolates showed similar protein banding profiles in the absence of iprodione in polyacrylamide gel electrophoresis studies. Similar protein profiles were also observed when these isolates were grown in the presence of low iprodione concentration (0.5|ig/nil). However, in the presence of concentration (0.5|ig/nil). However, in the presence of iprodione at concentration of 5|Xg/nil, one protein band with approximate molecular weight of 83 KDa was present in the growing resistant isolates (and the controls) but was missing in the inhibited sensitive isolates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth stimulation of Avena coleoptile tissue by indoleacetic acid (IAA) and fusicoccin (FC) was compared by measuring both their influence on RNA and protein synthesis during IAA or FC stimulated growth. FC stimulated growth more than IAA during the initial four hour exposure, after which the growth rate gradually declined to the control rate. FC, but not IAA, increased the uptake of 3H-Ieucine into tissue and the specific radioactivity of extracted protein. Cycloheximide inhibited the incorporation of 3H-Ieucine into protein by approximately 60% to 70% in all cases. In the presence of cycloheximide 3H-radioactivity accumulated in FC-treated tissue, whereas IAA did not seem to influence 3H-accumulation. These results suggest that FC stimulated leucine uptake into the tissue and that increased specific activity of coleoptile protein is due to increased leucine uptake, not an increased rate of protein synthesis. There was no measurable influence of IAA and/or FC on RNA and protein synthesis during the initial hours of a growth stimulation. Inhibitors of RNA and protein synthesis, actinomycin D and cycloheximide, respectively, severely inhibited IAA enhanced growth but only partially inhibited FC stimulated growth. The data are consistent with suggestions that a rapidly turning over protein participates in IAA stimulated growth, and that a continual synthesis of RNA and proteins is an absolute requirement for a long term growth response to IAA. On the contrary, FC-stimulated growth exhibited less dependency on the transcription and translation processes. The data are consistent with proposals suggesting different sites of action for FC and IAA stimulated growth. l?hen compared to CO2-free air, CO2 at 300 ppm had no significant influence on coleoptile growth and protein synthesis in the presence or absence of lAA or FC. Also, I mM malate, pH 6.0 did not influence growth of coleoptiles in the presence or absence of lAA. This result was obtained despite reports indicating that 300 ppm CO2 or I mM malate stimulates growth and protein synthesis. This lack of difference between CO2-treated and untreated tissue could indicate either that the interstitial space CO2 concentration is not actually different in the two treatments due to significant endogenous respiratory CO2 or else the data would suggest a very loose coupling between dark CO2 fixation and growth. IAA stimulated the in vivo fixation of 14c-bicarbonate (NaHI4c03) by about 25% and the addition of cycloheximide caused an inhibition of bicarbonate fixation within 30 min. Cycloheximide has also been reported to inhibit IAA-stimulated H+ excretion. These data are consistent with the acid growth theory and suggest that lAA stimulated growth involves dark CO2 fixation. The roles of dark CO2 fixation in lAA-stimulated growth are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presence of surface glycoprotein in Piptocephalis virginiana that recognizes the host glycoproteins band c, reported earlier from our laboratory, was detected by immunofluorescence microscopy. Germinated spores of P. virginiana treated with Mortierella pusilla cell wall protein extract, primary antibodies prepared against glycoproteins band c and FITC-goat anti-rabbit IgG conjugate showed fluorescence. This indicated that on the surfaces of the biotrophic mycoparasite P. virginiana , there might be a complementary molecule which recognizes the glycoproteins band c from M. pusilla. Immunobinding analysis identified a glycoprotein of Mr 100 kDa from the mycoparasite which binds with the host glycoproteins band c, separately as well as collectively. Purification of this glycoprotein was achieved by (i) 60% ammonium sulfate precipitation, (ii) followed by heat treatment, and (iii) Sephadex G-IOO gel filtration. The glycoprotein was isolated by preparative polyacrylamide gel electrophoresis by cutting and elution. The purity of the protein ·was ascertained by SDS-PAGE and Western blot analysis. Positive reaction to periodic acid-Schiff reagent revealed the glycoprotein nature of this 100 kDa protein. Mannose was identified as a major sugar component of this glycoprotein by using a BoehringerMannheim Glycan Differentiation Kit. Electrophoretically purified glycoprotein was used to raIse polyclonal antibody in rabbit. The specificity of the antibody was determined by dot-immunobinding test and western-blot analysis. Immunofluorescence mIcroscopy revealed surface localization of the protein on the germ tube of Piptocephalis virginiana. Fluorescence was also observed at the surfaceJ of the germinated spores and hyphae of the host, M. pusilla after treatment with complementary protein from P. virginiana, primary antibody prepared against the complementary protein and FITC-goat anti-rabbit IgG conjugate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabidopsis NPRI protein regulates systemic acquired resistance dependent on salicylic acid. Analyses by plant two-hybrid analysis in vivo and pull-down assays in vitro showed that the BTB/POZ domain of NPRI at the N-terminus serves as an autoinhibitory domain to negate the function of the transactivation domain at the C-terminus through direct binding of these two domains. I t was also shown that the binding of the BTB/POZ domain to the C-terminus of NPRI was abolished by SA treatment, suggesting that SA could interfere directly with this binding. By gel filtration, it was demonstrated that SA affects the conformation of full-length NPRl , confirming the role of NPRI as an SA receptor. Gel filtration analysis also indicated that NPRI could be converted from an oligomer to a dimer with SA treatment. Furthermore, one N-terminal deletion ~513 has been shown to act as a metal-binding protein and its two Cys-521 and Cys-529 are important for binding to Ni 2 + by pull-down assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular stress resistance has been shown to be highly correlated with longevity. However, the mechanisms conferring this stress resistance have yet to be identified. Maintenance of protein homeostasis is a critical component of cellular maintenance and stress resistance. Superior protein homeostasis capacities may thus underlie the greater stress resistance observed in longer-lived animals; however, little vertebrate data have been provided supporting this idea. I used two different experimental approaches to test the associations of protein homeostasis capacities with stress resistance and lifespan: 1) a comparison between a large set of vertebrate species with varying body masses and lifespans and 2) a comparison of long-lived Snell dwarf mice and their normal littermates. Protein homeostasis mechanisms including protein degradation activity, protein repair activity and molecular chaperone levels were examined. These measurements were performed in liver, heart and brain tissues, and isolated myoblasts. My results indicated that neither protein degradation nor protein repair were upregulated in association with enhanced stress resistance and longevity in an inter-species and intraspecies context. Furthermore, my results did show that there is a positive correlation between molecular chaperone levels and maximum lifespan (MLSP). However, there was no elevation of chaperone levels in the long-lived Snell dwarf mouse, indicating there are other mechanisms linked to their increased lifespan. Therefore, these results suggest that molecular chaperones are involved in increasing animal lifespan in an interspecies context.