3 resultados para Primate
em Brock University, Canada
Resumo:
Alternative splicing (AS) is the predominant mechanism responsible for increasing eukaryotic transcriptome and proteome complexity. In this phenomenon, numerous mRNA transcripts are produced from a single pre-mRNA sequence. AS is reported to occur in 95% of human multi-exon genes; one specific gene that undergoes AS is DNA polymerase beta (POLB). POLB is the main DNA repair gene which performs short patch base excision repair (BER). In primate untransformed primary fibroblast cell lines, it was determined that the splice variant (SV) frequency of POLB correlates positively with species lifespan. To date, AS patterns of POLB have only been examined in mammals primarily through the use of cell lines. However, little attention has been devoted to investigating if such a relationship exists in non-mammals and whether cell lines reflect what is observed in vertebrate tissues. This idea was explored through cloning and characterization of 1,214 POLB transcripts from four non-mammalian species (Gallus gallus domesticus, Larus glaucescens, Xenopus laevis, and Pogona vitticeps) and two mammalian species (Sylvilagus floridanus and Homo sapiens) in two tissue types, liver and brain. POLB SV frequency occurred at low frequencies, < 3.2%, in non-mammalian tissues relative to mammalian (>20%). The highest POLB SV frequency was found in H. sapiens liver and brain tissues, occurring at 65.4% and 91.7%, respectively. Tissue specific AS of POLB was observed in L. glaucescens, P. vitticeps, and H. sapiens, but not G. gallus domesticus, X. laevis and S. floridanus.The AS patterns of a second gene, transient receptor potential cation channel subfamily V member 1 (TRPV1), were compared to those of POLB in liver and brain tissues of G. gallus domesticus, X. laevis and H. sapiens. This comparison was performed to investigate if any changes (either increase or decrease) observed in the AS of POLB were gene specific or if they were tissue specific, in which case similar changes in AS would be seen in POLB and TRPV1. Analysis did not reveal an increase or decrease in both the AS of POLB and TRPV1 in either the liver or brain tissues of G. gallus domesticus and H. sapiens. This result suggested that the AS patterns of POLB were not influenced by tissue specific rates of AS. Interestingly, an increase in the AS of both genes was only observed in X. laevis brain tissue. This result suggests that AS in general may be increased in the X. laevis brain as compared to liver tissue. No positive correlation between POLB SV frequency and species lifespan was found in non-mammalian tissues. The AS patterns of POLB in human primary untransformed fibroblast cell lines were representative of those seen in human liver tissue but not in brain tissue. Altogether, the AS patterns of POLB from vertebrate tissues and primate cell lines revealed a positive correlation between POLB SV frequency and lifespan in mammals, but not in non-mammals. It appears that this positive correlation does not exist in vertebrate species as a whole.
Resumo:
Retrotransposons, which used to be considered as “junk DNA”, have begun to reveal their immense value to genome evolution and human biology due to recent studies. They consist of at least ~45% of the human genome and are more or less the same in other mammalian genomes. Retrotransposon elements (REs) are known to affect the human genome through many different mechanisms, such as generating insertion mutations, genomic instability, and alteration in gene expression. Previous studies have suggested several RE subfamilies, such as Alu, L1, SVA and LTR, are currently active in the human genome, and they are an important source of genetic diversity between human and other primates, as well as among humans. Although several groups had used Retrotransposon Insertion Polymorphisms (RIPs) as markers in studying primate evolutionary history, no study specifically focused on identifying Human-Specific Retrotransposon Element (HS-RE) and their roles in human genome evolution. In this study, by computationally comparing the human genome to 4 primate genomes, we identified a total of 18,860 HS-REs, among which are 11,664 Alus, 4,887 L1s, 1,526 SVAs and 783 LTRs (222 full length entries), representing the largest and most comprehensive list of HS-REs generated to date. Together, these HS-REs contributed a total of 14.2Mb sequence increase from the inserted REs and Target Site Duplications (TSDs), 71.6Kb increase from transductions, and 268.2 Kb sequence deletion of from insertion-mediated deletion, leading to a net increase of ~14 Mb sequences to the human genome. Furthermore, we observed for the first time that Y chromosome might be a hot target for new retrotransposon insertions in general and particularly for LTRs. The data also allowed for the first time the survey of frequency of TE insertions inside other TEs in comparison with TE insertion into none-TE regions. In summary, our data suggest that retrotransposon elements have played a significant role in the evolution of Homo sapiens.
Resumo:
Genome sequence varies in numerous ways among individuals although the gross architecture is fixed for all humans. Retrotransposons create one of the most abundant structural variants in the human genome and are divided in many families, with certain members in some families, e.g., L1, Alu, SVA, and HERV-K, remaining active for transposition. Along with other types of genomic variants, retrotransponson-derived variants contribute to the whole spectrum of genome variants in humans. With the advancement of sequencing techniques, many human genomes are being sequenced at the individual level, fueling the comparative research on these variants among individuals. In this thesis, the evolution and functional impact of structural variations is examined primarily focusing on retrotransposons in the context of human evolution. The thesis comprises of three different studies on the topics that are presented in three data chapters. First, the recent evolution of all human specific AluYb members, representing the second most active subfamily of Alus, was tracked to identify their source/master copy using a novel approach. All human-specific AluYb elements from the reference genome were extracted, aligned with one another to construct clusters of similar copies and each cluster was analyzed to generate the evolutionary relationship between the members of the cluster. The approach resulted in identification of one major driver copy of all human specific Yb8 and the source copy of the Yb9 lineage. Three new subfamilies within the AluYb family – Yb8a1, Yb10 and Yb11 were also identified, with Yb11 being the youngest and most polymorphic. Second, an attempt to construct a relation between transposable elements (TEs) and tandem repeats (TRs) was made at a genome-wide scale for the first time. Upon sequence comparison, positional cross-checking and other relevant analyses, it was observed that over 20% of all TRs are derived from TEs. This result established the first connection between these two types of repetitive elements, and extends our appreciation for the impact of TEs on genomes. Furthermore, only 6% of these TE-derived TRs follow the already postulated initiation and expansion mechanisms, suggesting that the others are likely to follow a yet-unidentified mechanism. Third, by taking a combination of multiple computational approaches involving all types of genetic variations published so far including transposable elements, the first whole genome sequence of the most recent common ancestor of all modern human populations that diverged into different populations around 125,000-100,000 years ago was constructed. The study shows that the current reference genome sequence is 8.89 million base pairs larger than our common ancestor’s genome, contributed by a whole spectrum of genetic mechanisms. The use of this ancestral reference genome to facilitate the analysis of personal genomes was demonstrated using an example genome and more insightful recent evolutionary analyses involving the Neanderthal genome. The three data chapters presented in this thesis conclude that the tandem repeats and transposable elements are not two entirely distinctly isolated elements as over 20% TRs are actually derived from TEs. Certain subfamilies of TEs themselves are still evolving with the generation of newer subfamilies. The evolutionary analyses of all TEs along with other genomic variants helped to construct the genome sequence of the most recent common ancestor to all modern human populations which provides a better alternative to human reference genome and can be a useful resource for the study of personal genomics, population genetics, human and primate evolution.