3 resultados para Preinvasive Breast Disease
em Brock University, Canada
Resumo:
The overall objective of this study was to investigate factors associated with long-term survival in axillary node negative (ANN) breast cancer patients. Clinical and biological factors included stage, histopathologic grade, p53 mutation, Her-2/neu amplification, estrogen receptor status (ER), progesterone receptor status (PR) and vascular invasion. Census derived socioeconomic (SES) indicators included median individual and household income, proportions of university educated individuals, housing type, "incidence" of low income and an indicator of living in an affluent neighbourhood. The effects of these measures on breast cancer-specific survival and competing cause survival were investigated. A cohort study examining survival among axillary node negative (ANN) breast cancer patients in the greater Toronto area commenced in 1 989. Patients were followed up until death, lost-to-follow up or study termination in 2004. Data were collected from several sources measuring patient demographics, clinical factors, treatment, recurrence of disease and survival. Census level SES data were collected using census geo-coding of patient addresses' at the time of diagnosis. Additional survival data were acquired from the Ontario Cancer Registry to enhance and extend the observation period of the study. Survival patterns were examined using KaplanMeier and life table procedures. Associations were examined using log-rank and Wilcoxon tests of univariate significance. Multivariate survival analyses were perfonned using Cox proportional hazards models. Analyses were stratified into less than and greater than 5 year survival periods to observe whether known markers of short-tenn survival were also associated with reductions in long-tenn survival among breast cancer patients. The 15 year survival probabilities in this cohort were: for breast cancerspecific survival 0.88, competing causes survival 0.89 and for overall survival 0.78. Estrogen receptor (ER) and progesterone receptor (PR) status (Hazard Ratio (HR) ERIPR- versus ER+/PR+, 8.15,95% CI, 4.74, 14.00), p53 mutation (HR, 3.88, 95% CI, 2.00, 7.53) and Her-2 amplification (HR, 2.66, 95% CI, 1.36, 5.19) were associated with significant reductions in short-tenn breast cancer-specific survival «5 years following diagnosis), however, not with long-term survival in univariate analyses. Stage, histopathologic grade and ERiPR status were the clinicallbiologieal factors that were associated with short-term breast cancer specific survival in multivariate results. Living in an affluent neighbourhood (top quintile of median household income compared to the rest of the population) was associated with the largest significant increase in long-tenn breast cancer-specific survival after adjustment for stage, histopathologic grade and treatment (HR, 0.36, 95% CI, 0.12, 0.89).
Resumo:
Understanding the relationship between genetic diseases and the genes associated with them is an important problem regarding human health. The vast amount of data created from a large number of high-throughput experiments performed in the last few years has resulted in an unprecedented growth in computational methods to tackle the disease gene association problem. Nowadays, it is clear that a genetic disease is not a consequence of a defect in a single gene. Instead, the disease phenotype is a reflection of various genetic components interacting in a complex network. In fact, genetic diseases, like any other phenotype, occur as a result of various genes working in sync with each other in a single or several biological module(s). Using a genetic algorithm, our method tries to evolve communities containing the set of potential disease genes likely to be involved in a given genetic disease. Having a set of known disease genes, we first obtain a protein-protein interaction (PPI) network containing all the known disease genes. All the other genes inside the procured PPI network are then considered as candidate disease genes as they lie in the vicinity of the known disease genes in the network. Our method attempts to find communities of potential disease genes strongly working with one another and with the set of known disease genes. As a proof of concept, we tested our approach on 16 breast cancer genes and 15 Parkinson's Disease genes. We obtained comparable or better results than CIPHER, ENDEAVOUR and GPEC, three of the most reliable and frequently used disease-gene ranking frameworks.
Resumo:
As a result of mutation in genes, which is a simple change in our DNA, we will have undesirable phenotypes which are known as genetic diseases or disorders. These small changes, which happen frequently, can have extreme results. Understanding and identifying these changes and associating these mutated genes with genetic diseases can play an important role in our health, by making us able to find better diagnosis and therapeutic strategies for these genetic diseases. As a result of years of experiments, there is a vast amount of data regarding human genome and different genetic diseases that they still need to be processed properly to extract useful information. This work is an effort to analyze some useful datasets and to apply different techniques to associate genes with genetic diseases. Two genetic diseases were studied here: Parkinson’s disease and breast cancer. Using genetic programming, we analyzed the complex network around known disease genes of the aforementioned diseases, and based on that we generated a ranking for genes, based on their relevance to these diseases. In order to generate these rankings, centrality measures of all nodes in the complex network surrounding the known disease genes of the given genetic disease were calculated. Using genetic programming, all the nodes were assigned scores based on the similarity of their centrality measures to those of the known disease genes. Obtained results showed that this method is successful at finding these patterns in centrality measures and the highly ranked genes are worthy as good candidate disease genes for being studied. Using standard benchmark tests, we tested our approach against ENDEAVOUR and CIPHER - two well known disease gene ranking frameworks - and we obtained comparable results.